
Developing Governance

Jason Han, Ph.D
Adjunct Professor of KAIST School of Computing

Founder of Ground X & Klaytn

web3classdao@gmail.com

http://web3classdao.xyz/kaist/

Lecture 19 (2023-05-17)

Building Web3 & Blockchain Applications
(CS492 Special Topics in Computer Science)
Spring 2023

Today’s Lecture 17 Overview

• Lecture Objective

- Understanding access control in a smart contract

- Understanding on-chain and off-chain governance

- Learning how to develop on-chain governance in Solidity

- Learning how to upgrade a smart contract

• Lecture will cover

- Access Control

- Governance

- Upgradeable contracts

• Dapp University: Governance (Github)

• Ultimate Web3, Full Stack Solidity, and Smart Contract Course by Patrick Collins

- Lesson 17: Hardhat DAOs

- Lesson 16: Hardhat Upgrades

• OpenZeppelin access control

• OpenZeppelin governance

• OpenZeppelin governance code

• How to Create a DAO Governance Token (Alchemy)

• Compound governance

• Tally: Explore DAOs

• Open Zeppelin Upgradeable Contracts (Github)

• Open Zeppelin Upgradeable ERC20

• Writing Upgradeable Contracts (OpenZeppelin)

• OpenZeppelin Upgrades: Step by Step Tutorial for Hardhat

References for the lecture

https://www.youtube.com/watch?v=LI4Ns77Upug
https://github.com/dappuniversity/governance
https://github.com/smartcontractkit/full-blockchain-solidity-course-js
https://docs.openzeppelin.com/contracts/4.x/access-control
https://docs.openzeppelin.com/contracts/4.x/governance
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/governance
https://docs.alchemy.com/docs/how-to-create-a-dao-governance-token
https://compound.finance/governance
https://www.tally.xyz/explore
https://www.youtube.com/watch?v=JgSj7IiE4jA&t=751s
https://github.com/t4sk/hello-oz-upgradeable
https://www.youtube.com/watch?v=Vt20jCu8OC8
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://forum.openzeppelin.com/t/openzeppelin-upgrades-step-by-step-tutorial-for-hardhat/3580

A governance & upgradeable

contracts
Examples from various sites

with some modification

Clone the code here!
git clone https://github.com/web3classdao/onchain-governance.git

git clone https://github.com/web3classdao/upgradeable-contracts.git

Access Control

Access Control so far

• The contract deployer (owner) by EOA

• The contract deployer (owner) by another contract

• msg.sender (usually EOA/contracts calling a function)

Need more granular access control

OpenZeppelin Ownable.sol

Use the modifier to check

the calling address is the owner

OpenZeppelin

AccessControl.sol

addresses that have a role

the admin of a role

Use the modifier

to check the calling account has the role

Granting and revoking a role are

the same as changing the _roles variable

Role-based ERC20 Token Example

A role is set as bytes32 constant

to save the storage

Use _grantRole internal function

of AccessControl

Use the onlyRole modifier

with a role argument

A role is set as bytes32 constant

to save the storage

Use _grantRole internal function

of AccessControl

Use the onlyRole modifier

with a role argument

Role-based ERC20 Token Example

Grant the deployer the admin role

If granting roles more accounts,

the deployer can call the grantRole()

Governance

What is

Governance?

Governance

• Governance is the systems in place that allow decisions to be made

- In a typical organizational structure, the executive team or a board of directors may

have the final say in decision-making, or shareholders vote on proposals to enact change

- In a political system, elected officials may enact legislation that attempts to represent

their constituents' desires

• Decentralized governance: No one person or authority owns or controls the governance

- Blockchain is used to implement decentralized governance

- On-chain governance: when proposed protocol changes are decided by a

stakeholder vote, usually by holders of a governance token, and voting happens on the

blockchain. Examples are Compound and Uniswap.

- Off-chain governance: where any protocol change decisions happen through an

informal process of social discussion, which, if approved, would be implemented in code.

An example is Ethereum.

https://ethereum.org/en/governance/

On-chain vs. Off-chain governance

https://docs.tally.xyz/knowledge-base/tally/on-chain-vs-off-chain

https://compound.finance/governance/

proposals/157

On-chain

Governance

Example

Compound
Service fee payment

https://www.tally.xyz/gov/nounsdao/proposal/261

On-chain

Governance

Example

Nouns DAO
Governance parameter update

https://www.tally.xyz/gov/nounsdao/proposal/261

On-chain governance lifecycle

Propose

Vote

Queue

Execute

Optional parameter

proposalThreshold

Create a proposal which is a sequence of actions

(specifying functions with arguments in a smart contract)

Cast votes with tokens (ERC20, ERC721, ERC1155) by delegates

Two options 1) a holder can become a delegate themselves

2) a holder can set a trusted representative as their delegate

If quorum was reached (enough voting power participated) and the majority voted in favor

the proposal is considered successful and can proceed to be executed

Execute the encoded function call with arguments to the target address

minDelay How long should a proposal be delayed to execute after it passes

quorum
a percentage of

the total supply
at the block a proposal’s
voting power is retrieved

votingDelay How long after a proposal is created should voting power be fixed

votingPeriod How long does a proposal remain open to votes

On-chain governance example

Token holders

Treasury

25 ETH

vote

Recipient

Release ETH funds

Proposal: the ETH funds of treasury will be released to the recipient

https://github.com/dappuniversity/governance

Token
(ERC20)

Governance Treasury

Timelock

Token holders
Recipient

On-chain governance architecture

ERC20Votes Governor

TimelockController

You have to implement 4 contracts:
3 of them just inherit OpenZeppelin governance contracts (red boxes)

https://github.com/dappuniversity/governance

https://docs.openzeppelin.com/

contracts/4.x/wizard

OpenZeppelin

Wizard

The easiest way to get

template codes

for tokens and governance

https://docs.openzeppelin.com/contracts/4.x/wizard

Governance Token

inherited by
ERC20Votes

The voting power of each

account is retrieved from

past snapshots rather than

current balance,

which is an important

protection that prevents

double voting

Timelock

inherited by
TimelockController

Defining the role of

proposers and executors

and setting up minDelay

How long should a proposal be delayed

to be executed after it passes

Who can propose?

Who can execute a proposal?

Governance

inherited by
Governor

how voting power is determined

how many votes are needed for quorum

what options people have

when casting a vote

and how those votes are counted

GovernorCountingSimple

For, Against, and Abstain

only For and Abstain votes

are counted towards quorum

set up roles and a timelock for execution

Treasury contract

ETH fund treasury

- The fund will be set when the

contract is created

- Only the owner of the contract

can release the fund

Deployment

Script (1/2)
2_deploy_contracts.js

Deployment

Script (2/2)
2_deploy_contracts.js

The ownership of contract

should be transferred to

the timelock contract

in order to be executed

by the timelock

after a proposal passed

Grant a proposer role

and an executor role

to the governance contract

Execution Script (1/4)
scripts/1_create_proposal.js

Prepare voters as delegators

Execution Script (2/4)
scripts/1_create_proposal.js

Propose phase

Execution Script (3/4)
scripts/1_create_proposal.js

Vote phase

Execution Script (4/4)
scripts/1_create_proposal.js

Queue & Execute phase

Behind

OpenZeppelin Governance

default
functions

Governor.sol

GovernorCountingSimple.sol

GovernorSetting.sol

GovernorTimelockControl.sol

GovernorVotes.sol

Customize Governor.sol

(Inherit Governor)

Setting parameters

votingDelay, votingPeriod, proposalThreshold

Defining voting options (3 options) &

counting votes (_countVote(),

_quorumReached(), _voteSucceeded())

Binding the execution to TimelockController

enforcing the minDelay before the execution

Overriding Governor’s functions such as

state(), _execute(), _cancel()

Wrapper contract for tokens (ERC20, ERC721)

Binding the token to ERC20Votes

Getting the voting weight (_getVotes())

TimelockController.sol

ERC20Votes.sol

Governor Architecture

Setting up the roles
TimelockController.sol

Set up the admin role

to this contract

execute() function has the modifier

to check if the caller has a role of executor

or the executor role open to anyone (address(0))

Proposing
Governor.sol

Check if the proposer has

more voting power

than the proposal threshold

The proposal ID

is the hash value of all input

of the proposal

Setting the voting start time

and end time

Adding a proposal

to the proposals variable

Note. it doesn’t store

the proposal content

to save storage

GovernorVotes.sol

ERC20Votes.sol

GovernorCountingSimple.sol

Governor.sol

Casting a vote

Governor.sol GovernorCountingSimple.sol

GovernorVotesQuorumFraction.sol

ERC20Votes.sol

Checking the vote succeeded

Queuing
GovernorTimelockControl.sol

TimelockController.sol

Check the state of a proposal

with the proposal ID

By the proposal ID,

the proposal can be verified

without saving the proposal content

Schedule a proposal to execute

after minDelay

Set the timestamp

when the proposal is able to be executed after

Checking the state of a proposal
TimelockController.sol

if _timestamp[id] is

0: unset (Vote)

>1: queued (Queue)

1: done (Execute)

Note.

queue() and execute() function

will not be called automatically

even after the condition is satisfied.

Someone should call the functions explicitly

and then check if they can be executed

Executing
TimelockController.sol

Only the executor role

can run the function

Only the executor role

can run the function

Check if the execution is ready

Send a tx request

to the target contract

with the ETH value and calldata

Check if minDelay has passed

since the voting ended

Best practices to learn

• Create a main contract (Governor) and make it customizable through contract

inheritance and wrapper contracts.

• Set up roles to control access to functions and set up states to control that only

functions that fit the state are executed.

• To save blockchain storage, don’t store large input parameters(proposal content).

Instead, store only the hash value(proposalId) of the parameters. By hashing them in

function calls and checking if it is the same value as before, we can verify if the

parameter is the same in a series of function calls. The large parameters may be

stored offchain.

Upgradeable Contracts

A smart contract is

immutable.

Can we upgrade

a smart contract?

Three options of upgrading

• Set upgradable parameters

e.g., setMiningRewards()

• Migrate all states and users from the old contract to the new one

e.g., Uniswap V1, V2, V3 (Migrate from V2 to V3)

• Use a proxy

https://support.uniswap.org/hc/en-us/articles/7423351004173-Migrate-Liquidity-from-Uniswap-V2-to-V3

Proxy

Proxy
Admin

V1

V2

Admin

User

fallback()

upgrade()

upgrade()

How a proxy works to upgrade a contract

Implementation contract

https://www.youtube.com/watch?v=JgSj7IiE4jA

DelegateCall

• DelegateCall is a low-level Solidity opcode that allows a contract to execute code from

another contract, but it using the state and the storage of the calling contract.

• The syntax for DelegateCall

(bool success, bytes memory returnData) = address.delegatecall(bytes memory data);

the address is the address of contract to execute, and the data is the encoded function call to execute

• Call vs. DelegateCall

states

balance

states

balance

https://https://www.linkedin.com/pulse/delegatecall-solidity-some-code-examples-johnny-time/

DelegateCallExample.sol Proxy.sol

variable a will be stored
on CallerContract

DelegateCall Example

https://https://www.linkedin.com/pulse/delegatecall-solidity-

some-code-examples-johnny-time/

Implementing Upgradeable contracts

with OpenZeppelin & Hardhat

Box.sol BoxV2.sol

Shouldn’t define

a constructor

Instead of a constructor,

use initialize() New function

Same variable

Implementation contracts

https://www.youtube.com/watch?v=JgSj7IiE4jA

https://github.com/t4sk/hello-oz-upgradeable

scripts/deploy_box_v1.js

scripts/upgrade_box_v2.js

Deploy & Upgrade contracts

ProxyAdmin

Box

TransparentUpgradeableProxy

ProxyAdmin.upgrade()

BoxV2

Etherscan: https://sepolia.etherscan.io/address/0x20efda938e7c1bf25ba7dc6b7a4ac8075b7dfbda

Etherscan: https://sepolia.etherscan.io/address/0x20efda938e7c1bf25ba7dc6b7a4ac8075b7dfbda

Run contracts with etherscan

TransparentUpgradeableProxy

https://sepolia.etherscan.io/address/0x2c384ee352eea99fc8b6ddc7e6b5664397ced172#code

https://sepolia.etherscan.io/address/0x2c384ee352eea99fc8b6ddc7e6b5664397ced172#code

hardhat.config.js commands

hardhat config file and commands

Upgradeable

ERC20 tokens

https://www.youtube.com/watch?v=Vt20jCu8OC8
https://github.com/t4sk/hello-oz-upgradeable

https://docs.openzeppelin.com/contracts/4.x/wizard

• Use initialize(), a regular function to run all the setup logic instead of a constructor

• Inherit an Initializable contract and use an initializer modifier in order not to call initialize()

multiple times

• Avoid initial values in field declarations. Make sure that all initial values are set in an

initializer function (ok to define constant state variables)

• Invoke the _disableInitializers function in the constructor to automatically lock it when it is

deployed

• Use @openzeppelin/contracts-upgradeable for libraries and contracts instead of

@openzeppelin/contracts

• You cannot change the order in which the contract state variables are declared, nor

their type. If you need to introduce a new variable, make sure you always do so at the

end.

• Read OpenZeppelin docs for more restrictions

Restrictions of upgradeable contracts

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

Wrap-up

We Learned

• Access Control

• Onchain governance

• Developing onchain governance with OpenZeppelin
• Technical detail on OpenZeppelin governance

• Upgradeable contract

• Developing upgradeable contract with OpenZeppelin

Governance
Layer

Asset
Layer

Foundation
Layer

Web3 App
Layer

Blockchain Smart Contract L1/L2 ZKP Wallet

Distributed File System Oracle Interchain Bridge Browser

Cryptocurrency NFTStablecoin SBT
Security

Token

Fungible Asset Non-Fungible Asset Security

Community DAOTokenomics Governance DAO Tools

Identity
Social
Graph

Content
Publishing

Game
Finance

(DeFi)
Commerce

Revisit: Web3 Stack from the first lecture

Game
Content

& IP

Meta

verse
Social

Media
ESGFinance

Protocol
Layer

Lecture 1 – 12
Web3 staaks, blockchain tech,

programming solidity,

smart contracts, building dapps,

web3 security

Lecture 15, 17
non-standard token, ERC20,

ERC721(NFT), ERC1155,

ERC5192(SBT), Oracle, IPFS

Lecture 19
Access control,

on-chain governance,

upgradeable contracts

In terms of web3 technology,

we covered three layers

from the bottom.

You had a skill to develop

your own basic web3 apps

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55

