Building Web3 & Blockchain Applications
KAIST We b 3 @ KA I ST (CS492 Special Topics in Computer Science)

School of Computing .
Building Web3 Apps to Solve Real Problems Sprlng 2023

Developing Governance

Lecture 19 (2023-05-17)

Jason Han, Ph.D

Adjunct Professor of KAIST School of Computing
Founder of Ground X & Klayin

webJ3classdao@gmail.com
http://web3classdao.xyz/kaist/

Today’s Lecture 17 Overview

* Lecture Objective
- Understanding access control in a smart contfract
- Understanding on-chain and off-chain governance
- Learning how to develop on-chain governance in Solidity
- Learning how to upgrade a smart contract

« Lecture will cover
- Access Control
- Governance
- Upgradeable contracts

References for the lecture

Dapp University: Governance (Github)

Ultimate Web3, Full Stack Solidity, and Smart Contract Course by Patrick Collins
- Lesson 17: Hardhat DAOs
- Lesson 16: Hardhat Upgrades

Open/Zeppelin access control

OpenZeppelin governance

OpenZeppelin governance code

How to Create a DAO Governance Token (Alchemy)

Compound governance
Tally: Explore DAOSs
Open Zeppelin Upgradeable Contracts (Github)

Open Zeppelin Upgradeable ERC20

Writing Upgradeable Contracts (OpenZeppelin)

OpenZeppelin Upgrades: Step by Step Tutorial for Hardhat

https://www.youtube.com/watch?v=LI4Ns77Upug
https://github.com/dappuniversity/governance
https://github.com/smartcontractkit/full-blockchain-solidity-course-js
https://docs.openzeppelin.com/contracts/4.x/access-control
https://docs.openzeppelin.com/contracts/4.x/governance
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/governance
https://docs.alchemy.com/docs/how-to-create-a-dao-governance-token
https://compound.finance/governance
https://www.tally.xyz/explore
https://www.youtube.com/watch?v=JgSj7IiE4jA&t=751s
https://github.com/t4sk/hello-oz-upgradeable
https://www.youtube.com/watch?v=Vt20jCu8OC8
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://forum.openzeppelin.com/t/openzeppelin-upgrades-step-by-step-tutorial-for-hardhat/3580

A governance & upgradeable
contracts

Examples from various sites
with some modification

Clone the code here!
git clone https://github.com/web3classdao/onchain-governance.git
git clone https://github.com/webg3classdao/upgradeable-contracts.git

Access Control

Access Control so far

« The confract deployer (owner) by EOA
« The confract deployer (owner) by another confract

 msg.sender (usually EOA/contracts calling a function)

Need more granular access conirol

OpenlZeppelin Ownable.sol

tract ntract Ownable is Context {
address pr te _owner;

nt OwnershipTransferred(address ind d previousOwner, address inde newOwner) ;
nstructor() {

_transferOwnership(_msgSender());

r onlyOwner() {

Use the modifier to check _checkOwner

the calling address is the owner

2

on _checkOwner() internal \ virtual {

require(owner() == _msgSender(), "Ownable: caller

is not the owner");

1 transferOwnership(address newOwner) pi virtual onlyOwner {

require(newOwner != address(@), "Ownable: new owner is the zero address"

3
_transferOwnership(newOwner);

H addresses that have a role ytes3z a;:m.molei: e
OpenZeppelin
> RoleData) _roles;

AccessControl.sol .

onlyRole

Use The modiﬁer _checkRole(ro
fo check the calling account has the role =

_checkRole(bytes
_checkRole(role, _i

ccount)

account),

(role), 32)

hasRole(bytes32 role, addre account
; (bool

eturn _roles[role].members[account];

grantRole 32 role, ess account
if (!hasRole(role, account)
_roles[role].members[account] =
emit RoleGranted(role, account, _msgSender());

Granting and revoking a role are
the same as changing the _roles variable _revokeRole(bytes32 role, address account

if (hasRole(role, account)
_roles[role].members[account] = 5
emit RoleRevoked(role, account, _msgSender());

Role-based ERC20 Token Example

RoleBasedToken.sol

prag
import "@openzeppelin/contracts
import * pelin/contracts; /Ac
import "@openzeppelin/contracts/token/ERC2
RoleBasedToken ERC206, Ownable, AccessControl|{
A role is set as byfe532 constant ytes3 MINTER_ROLE = keccak256("MINTER_ROLE

fo save the storage BURNER_ROLE = keccak256("BURNER_ROLE

(address minter, address burner) ERC2@("MyTestToken", "MTT") {

Use _grantRole internal function _grantRole(MINTER_ROLE, minter);
of AccessControl _grantRole(BURNER_ROLE, burner);

grantRole(2 role, address account) onlyOwner {
_grantRole(role,

mint(addr to, uint256 amount) onlyRole(MINTER_ROLE) {

. _mint(to, amount);
Use the onlyRole modifier

with a role argument
burn(address from, uint256 amount) onlyRole(BURNER_ROLE) {
_burn(from, amount);

Role-based ERC20 Token Example

RoleBasedToken.sol

pragma

impor @openzeppelin/contracts/access/AccessControl.
import "@openzeppelin, 1tract e RC268/ERC26
oleBasedToken ERC20, AccessControl |{
A role is set as bytes32 constant bytes3? MINTER_ROLE = keccak256("MINTER_ROLE");
fo save the storage bytes32 BURNER_ROLE = keccak256("BURNER_ROLE");

(address minter, address burner) ERC2@("MyTestToken"
Use _grantRole internal function _grantRole(MINTER_ROLE, minter);
of AccessControl _grantRole(BURNER_ROLE, burner);

Grant the deployer the admin role
If granting roles more accounts, : _grantRole (DEFAULT_ADMIN_ROLE,
the deployer can call the grantRole()

mint(address to, uint256 amount) onlyRole(MINTER_ROLE) {
_mint(to, amount);

Use the onlyRole modifier
with a role argument

burn(address from, uint256 amount) onlyRole(BURNER_ROLE)
_burn(from, amount);

.
1

Governance

What is
Governance?

Governance

« Governance is the systems in place that allow decisions to be made
- In a typical organizational structure, the executive team or a board of directors may
have the final say in decision-making, or shareholders vote on proposals to enact change
- In a political system, elected officials may enact legislation that attempts to represent
their constituents' desires

» Decentralized governance: No one person or authority owns or controls the governance

- Blockchain is used to implement decentralized governance

- On-chain governance: when proposed protocol changes are decided by a
stakeholder vote, usually by holders of a governance token, and voting happens on the
blockchain. Examples are Compound and Uniswap.

- Off-chain governance: where any protocol change decisions happen through an
informal process of social discussion, which, if approved, would be implemented in code.
An example is Ethereum.

https://ethereum.org/en/governance/

On-chain vs. Off-chain governance

An on-chain flow runs everything entirely in code:

On-chain On-chain
Proposal Vote

>
transactions transactions
to execute to execute

An off-chain flow depends on trusting admins to execute the result of the vote:

transactions
executed!

Admin
Multisig

transactions
to execute

https://docs.tally xyz/knowledge-base/tally/on-chain-vs-off-chain

transactions
executed!

Off-chain
proposal

social trust
required!

.ﬁCompound Markets Governance Docs

On-chain
Governance
Exq m p I e C?mpensation e N

assed | 157 » Executed April 7th, 2023

<— PROPOSALS

OpenZeppelin Security Partnership - 2023 Q2

462,555 Against

Compound
Service fee payment

Details Proposal History
1 Transfer 23617.05 to 0x57C970568668087c05352456a3F59B58B03 Created
30066 °
° Active

Background

Succeeded
Starting on Dec 21st, 2021, OpenZeppelin was to offer the Compound DAO security
services including continuous audit, security advisory, and monitoring. At the start of every Queued
quarter, OpenZeppelin creates a proposal to perform the next service fee payment.
Compensation Structure Executed

We receive our quarterly payments in a lump-sum of COMP. Based on the last week's average
price, this would be $42.34 per COMP for a total quarterly payment of 23,617 COMP equaling
$1M per the original agreement. This COMP will be transferred from the Timelock's existing

balance. More detail in this

. By approving this proposal, you agree that any services provided by OpenZeppelin shall be
https://compound.finance/governance/

proposals/157

governed by the

ﬁ'quly Q_ Explore DAOs AddaDAO Resources Media Developers
°
n-chain

EXECUTED

G ove r n q n C e Dynamic Quorum Updates 4 Proposal executed H
Exa m p I e ,? by Ox4754b7e3DEde42D71d6c92978f25F306176EC7e9 + ID 261 « Proposed on: Mar 31st, 2023

Overview Votes

For Against Abstain

Governance parameter update

Fri Mar 31 01490
Description Executable code Comments @ Published on-chain
TL;DR - increase max quorum from 15% to 20% @ Voting period started

Dynamic Quorum Parameter Updates As articulated in this detailed post, three parameters need to e
be set for dynamic quorum. @ Voting period ended

CURRENT SETTINGS . .
1. Minimum quorum %: currently set to 10% Proposal queued
2. Maximum quorum %: currently set to 15%
3. Coefficient: currently set to 1, such that each against vote raises the quorum requirement by one ° Proposal executed
vate, until the maximum guorum is reached.

PROPOSED SETTINGS

1. Minimum quorum %: 10% (no change]
2. Maximum quorum %: set to 20%
3. Coefficient: 1(no change)

Function 1:

Signature:

Calldatas:
uintl6:
uintlé:

https://www.tally.xyz/gov/nounsdao/proposal/261 wint32:

Tareet:*

https://www.tally.xyz/gov/nounsdao/proposal/261

On-chain governance lifecycle

Optional parameter
proposalThreshold

Pr e Create a proposal which is a sequence of actions
Oopos (specifying functions with arguments in a smart contract)

[
votingDelay How long after a proposal is created should voting power be fixed

quorum v
a percentage of Cast votes with tokens (ERC20, ERC721, ERCI1155) by delegates
the tfotal supply Vote Two options 1) a holder can become a delegate themselves
%ﬁ?ﬂ%ﬂgﬁ;fgﬁgﬂ J | 2) a holder can set a trusted representative as their delegate

votingPeriod How long does a proposal remain open to votes

v

Q If guorum was reached (enough voting power participated) and the majority voted in favor
veue the proposal is considered successful and can proceed to be executed

[
minDelay How long should a proposal be delayed to execute after it passes

v
Execute

Execute the encoded function call with arguments to the target address

On-chain governance example

Proposal: the ETH funds of treasury will be released to the recipient

vote

Treasury

25 ETH

Release ETH funds

Token holders

v

Recipient

https://github.com/dappuniversity/governance

On-chain governance architecture

You have to implement 4 contracts:

3 of them just inherit OpenZeppelin governance contracts (red boxes)

ERC20Votes

Token

Governor

» Governance

(ERC20)

Token holders

Treasury

\ 4

Timelock

TimelockController

https://github.com/dappuniversity/governance

Recipient

OpenZeppelin
Wizard

The easiest way to get
femplate codes
for tokens and governance

https://docs.openzeppelin.com/

contracts/4.x/wizard

7 Openzeppelin | docs Search Contracts GitHub Forum Blog Website

Contracts Wizard

Not sure where to start? Use the interactive generator below to bootstrap your contract and learn about the components offered in
OpenZeppelin Contracts.

TIP

Place the resulting contract in your contracts directory in order to compile it with a tool like Hardhat or Truffle. Consider
reading our guide on Developing_Smart Contracts for more guidance!

ERC20 ERC721 ERC1155 m Custom 0 Copy to Clipboard @ Open in Remix 3 Download
SETTINGS
Name
MyGovernor impor Joper pelin/contracts/governance .
i pelin/contract:
Voting Delay Voting Period i : i overnance/extensions/GovernorCounting
ir xtensio GovernorVotes.so
1 block 1 week ir t "@op ppelin/contracts/governance/extensior

ppelin/contracts/governance

1 block = 12 seconds
Proposal Threshold
2

Quorum % @ # O

4

https://docs.openzeppelin.com/contracts/4.x/wizard

Governance Token pragma solidity "0.8.9;

(] (]
Inherl'l'ed by import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";

ERC20VOieS contract | Token is ERC2@Votes {

ONST .-x,".g\w‘(
The voting power of each string memory _name,

account is retrieved from string memory _symbol,
uint256 _initialSupply

) ERC20(_name, _symbol) ERC20Permit(_name) {

past snapshots rather than
current balance,

which is an important . -mint(msg.sender, _initialsupply);
protection that prevents :
double voting

function _afterTokenTransfer(

address from,
address to,
uint256 amount
) internal override(ERC20Votes) {
r._afterTokenTransfer(from, to, amount);

—

)n _mint(address to, uint256 amount) internal override(ERC20Votes) {
per._mint(to, amount);

—

function _burn(address account, uint256 amount) internal override(ERC20Votes) {
r._burn(account, amount);

—

Timelock
inherited by
TimelockController

Defining the role of
proposers and executors
and Sefﬁng up miﬂDeIOy import "@openzeppelin/contrac overnance/TimelockController.sol"

pragma "9.8.9;

TimeLock TimelockController {

How long should a proposal be delayed :

. minDelay,
fo be executed after it passes

proposers,
executors
) TimelockController(minDelay, proposers, executors) {}

}

Who can propose?¢

Who can execute a proposal?

pragma solidity "0.8.9;

: overnqnce import "@openzeppelin/contracts/governance/Governor.sol";
inherited by import "@openzeppelin/contracts/governance/extensions/GovernorCountingSimple.sol";

import "@openzeppelin/contracts/governance/extensions/GovernorVotes.sol";
Governor import "@openzeppelin/contracts/governance/extensions/GovernorVotesQuorumFraction.sol";
import "@openzeppelin/contracts/governance/extensions/GovernorTimelockControl.sol";

. import "@openzeppelin/contracts/governance/extensions/GovernorSettings.sol";
what options people have

when casting a vote
and how those votes are counted

Governance 1
Governor,
GovernorCountingSimple,

GovernorCountingSimple

For, Against, and Abstain
only For and Abstain votes
are counted towards quorum

GovernorVotes,
GovernorVotesQuorumFraction,
GovernorTimelockControl

b7
LS
uint256 public votingDelay_;
how voting power is determined uint256 public votingPeriod_;
how many votes are needed for quorum onstructor(
. . Vote token,
set up roles and a timelock for execution o)
elockController _timelock,

uint256 _quorum,
uint256 _votingDelay,
uint256 _votingPeriod

Governor("Web3@KAIST DAO")
GovernorVotes(_token)
GovernorVotesQuorumFraction(_quorum)
GovernorTimelockControl(_timelock)

votingDelay = _votingDelay;
votingPeriod_ = _votingPeriod;

—

Treasury contract

ETH fund treasury
- The fund will be set when the
confract is created pragma "9.8.9;
- Only the owner of the contract
can release the fund import "@openzeppelin/contracts/access/Ownable.sol"

Treasury Ownable {
uint256 totalFunds;
address payee;
bool isReleased;

(address _payee) payable {
totalFunds = .value;
payee = _payee;
isReleased =

releaseFunds() onlyOwner {

isReleased = g
payee).transfer(totalFunds);

nst Token = artifacts.require("Token")
't Timelock = artifacts.require("Timelock")

Deployment const Governance = artifacts.require("Governance")
scripi (‘I /2) const Treasury = artifacts.require("Treasury")

module.exports = async functi (deployer) {

2_deploy_contracts.js

st [executor, proposer, voterl, voter2, voter3, voter4, voter5] = await web3.eth.getAccounts()

const name = "Web3@KAIST"
const symbol = "W3K"
const supply = web3.utils.toWei('1eee', 'ether')

await deployer.deploy(Token, name, symbol, supply)
const token = await Token.deployed()

const amount = web3.utils.toWei('50', 'ether')

await token.transfer(voterl, amount, from: executor
await token.transfer(voter2, amount, from: executor
await token.transfer(voter3, amount, from: executor
await token.transfer(voter4, amount, from: executor
await token.transfer(voter5, amount, from: executor

et Nt St S

1st minDelay = 1

await deployer.deploy(Timelock, minDelay, [proposer], [executor])
const timelock = await Timelock.deployed()

Deployment quorun -

votingDelay = ©
scripi (2/2) votingPeriod = 5

await deployer.deploy(Governance, token.address, timelock.address, quorum, votingDelay, votingPeriod)
governance = await Governance.deployed()

2_deploy_contracts.js

funds = web3.utils.toWei('25"', 'ether')

await deployer.deploy(Treasury, executor, value: funds })
treasury = await Treasury.deployed()

The ownership of contract await- treasury.transferOwnership(timelock.address, from: executor })

should be transferred to
the timelock contract
in order to be executed
by the timelock

after a proposal passed

proposerRole = await timelock.PROPOSER_ROLE()
executorRole = await timelock.EXECUTOR_ROLE()

Grant a proposer role
and an executor role

await timelock.grantRole(proposerRole overnance.address from: executor
to the governance contract - (prop v ’)

await timelock.grantRole(executorRole, governance.address, from: executor })

hH

Execution Script (1/4)

scripts/1_create_proposal.js

Prepare voters as delegators

Token = artifacts.require("Token")
= artifacts.require("Timelock")

Governance = artifacts.require("Governance")

Treasury = artifacts.require("Treasury")

module.exports = (callback) {
[executor, proposer, voterl, voter2, voter3, voterd, voter5] = await web3.eth.getAccounts()

isReleased, funds, blockNumber, proposalState, vote

amount = web3.utils.toWei('5', 'ether')

token = await Token.deployed()
await token.delegate(voterl, from: voterl
await token.delegate(voter2, from: voter2

(
(
(
(

await token.delegate(voter5, from: voter5

await token.delegate(voter3, from: voter3

await token.delegate(voter4, from: voter4d

e N N N S

treasury = await Treasury.deployed()

isReleased = await treasury.isReleased()
console.log(Funds released? isReleased})

Funds released? false

Funds inside of treasury: 25 ETH funds = await web3.eth.getBalance(treasury.address)

console.log(Funds inside of treasury: web3.utils.fromWei(funds.toString(), 'ether')} ETH\n)

Execution Script (2/4)

scripts/1_create_proposal.js

Propose phase

Created Proposal: 100758552249868773U68698uU881553086
93203920312959842149531265319U78382688296537

Current state of proposal: @ (Pending)

Proposal created on block 21

Proposal deadline on block 26

Current blocknumber: 21
. 50

Number of votes required to pass

governance = await Governance.deployed()
encodedFunction = await treasury.contract.methods.releaseFunds().encodeABI()
description = "Release Funds from Treasury"

tx = await governance.propose([treasury.address], [@], [encodedFunction], description, from:

id = tx.logs[@].args.proposalld
console.log(Created Proposal: id.toString() }\n")

proposalState = await governance.state.call(id)
console.log(Current state of proposal: proposalState.toString()} (Pending) \n’)

snapshot = await governance.proposalSnapshot.call(id)
console.log(Proposal created on block snapshot.toString()})

deadline = await governance.proposalDeadline.call(id)
console.log(Proposal deadline on block ${deadline.toString()}\n")

blockNumber = await web3.eth.getBlockNumber()
console.log(Current blocknumber: blockNumber}\n-)

quorum = await governance.quorum(blockNumber - 1)
console.log(Number of votes required to pass: web3.utils.fromWei(quorum.toString(), 'ether')}\n")

Execution Script (3/4)

scripts/1_create_proposal.js

Vote phase

Casting votes...

Current state of proposal: 1 (Active)

Votes For: 150
Votes Against: 50
Votes Neutral: 50

Current blocknumber: 27

Current state of proposal: 4 (Succeeded)

console.log(Casting votes...\n")

from: voterl
from: voter2
from: voter3
from: voter4
from: voter5

vote = await governance.castVote(id,
vote = await governance.castVote(id,
vote = await governance.castVote(id,

-

-

vote = await governance.castVote(id,
vote = await governance.castVote(id,

-

N ® R R R
-
e N e N

-

proposalState = await governance.state.call(id)
console.log(Current state of proposal: proposalState.toString()} (Active) \n’)

await token.transfer(proposer, amount, from: executor })

{ againstVotes, forVotes, abstainVotes } = await governance.proposalVotes.call(id)
console.log(Votes For: web3.utils.fromWei(forVotes.toString(), 'ether')})
console.log(Votes Against: web3.utils.fromWei(againstVotes.toString(), 'ether')})
console.log(Votes Neutral: web3.utils.fromWei(abstainVotes.toString(), 'ether')}\n’)

blockNumber = await web3.eth.getBlockNumber()
console.log(Current blocknumber: blockNumber}\n)

proposalState = await governance.state.call(id)
console.log(Current state of proposal: proposalState.toString()} (Succeeded) \n')

Execution Script (4/4)

scripts/1_create_proposal.js

Quevue & Execute phase

hash = web3.utils.sha3("Release Funds ry

t governance.queue([treasury.address], [0 encodedFunction], hash, from: executor

proposalState = await governance.state.call(id)

Current state of proposal: 5 (Queued) console.log(Current state of proposal: ${proposalState.toString()} (Queued

await governance.execute([treasury.address], [@], [encodedFunction], hash, from: executor })

proposalState)ait governance.state.call(id)

Current state of proposal: 7 (Executed) console.log(Current state of p sal: proposalState.toString()

(Executed) \n’)

isReleased = await treasury.isReleased()
console.log(Funds rel 1? isReleased

Funds released? true
Funds inside of treasury: 0 ETH

funds = await web3.et y.address)

console.log(Funds i > of t Ay web3.utils.fromWei(funds.toString(), 'ether')} ETH\n)

callback()

Behind
OpeniZeppelin Governance

Governor.sol

Governor Architecture

Customize Governor.sol

default
functions

(Inherit Governor)

GovernorCountingSimple.sol

GovernorSetting.sol

GovernorTimelockControl.sol

A

TimelockConftroller.sol

GovernorVotes.sol

A

ERC20Votes.sol

Defining voting options (3 options) &
counting votes (_countVote(),
_quorumReached(), _voteSucceeded())

Setting parameters
votingDelay, votingPeriod, proposalThreshold

Binding the execution to TimelockController
enforcing the minDelay before the execution
Overriding Governor’s functions such as
state(), _execute(), _cancel)

Wrapper contract for tokens (ERC20, ERC721)
Binding the token to ERC20Votes
Getting the voting weight (_getVotes())

Setting up the roles

TimelockController.sol

Set up the admin role
fo this contract

execute() function has the modifier
fo check if the caller has a role of executor
or the executor role open to anyone (address(0))

bytes32 tant TIMELOCK_ADMIN_ROLE = keccak256(

bytes32 PROPOSER_ROLE = keccak256("PROPOSER_ROLE");
bytes32 EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");
bytes32 1 CANCELLER_ROLE = keccak256("CANCELLER_ROLE
(uint256 minDelay, address proposers,
address y executors, address admin) {

_setRoleAdmin(TIMELOCK_ADMIN_ROLE, TIMELOCK_ADMIN_ROLE);
_setRoleAdmin(PROPOSER_ROLE, TIMELOCK_ADMIN_ROLE);
_setRoleAdmin(EXECUTOR_ROLE, TIMELOCK_ADMIN_ROLE);
_setRoleAdmin(CANCELLER_ROLE, TIMELOCK_ADMIN_ROLE);

_setupRole(TIMELOCK_ADMIN_ROLE, address()3

if (admin != address(@)
_setupRole(TIMELOCK_ADMIN_ROLE, admin);

for (uint256 i = @; i < proposers.length; ++i
_setupRole(PROPOSER_ROLE, proposers[i]);
_setupRole(CANCELLER_ROLE, proposers[i]);

for (uint256 i = @; i < executors.length; ++i
_setupRole(EXECUTOR_ROLE, executors[i]);

_minDelay = minDelay;
emit MinDelayChange(©, minDelay);

onlyRoleOrOpenRole(bytes32 role)
if (lhasRole(role, address(@))
_checkRole(role, _msgSender());

MELOCK_ADMIN_RO

tion propose(

* / address memory targets,
PrOPOSIng uint256 memory values,
Governor.sol bytes[] memory calldatas,
string memory description
) public virtual override returns (uint256) {
address proposer = _msgSender();

uint256 currentTimepoint = clock();

Check if the proposer has require
more voting power) getVotes(proposer, currentTimepoint - 1) >= proposalThreshold(),

than the proposal threshold "Governor: proposer votes below proposal threshold"

The proposal ID
is the hash value of all input uint256 proposalld = hashProposal(targets, values, calldatas, keccak256(bytes(description)));

of the proposal

require(targets.length == values.length, "Governor: invalid proposal length");
require(targets.length == calldatas.length, "Governor: invalid proposal length");
require(targets.length > @, "Governor: empty proposal");
require(_proposals[proposalld].voteStart == @, "Governor: proposal already exists");
Setting the voting start time uint256 snapshot = currentTimepoint + votingDelay();
and end time 7 uint256 deadline = snapshot + votingPeriod();
_proposals|[proposalld] = ProposalCore({
proposer: proposer,
Adding a proposal voteStart: SafeCast.toUint64(snapshot),
to the proposals variable voteEnd: SafeCast.toUint64(deadline),
Note. it doesn’t store executed: false,
the proposal content canceled: false,
to save storage __gap_unusedo: 0,

__gap_unusedl: ©

Casting a vote

—» GovernorVotes.sol

_getVotes(

account,
timepoint,

Governor.sol ‘ 3
eturn token.getPastVotes(account, timepoint
castVote(1
proposalld,
C s account,
1int8 support,
t reason,
parans ERC20Votes.sol
1 returns (uint256)
ProposalCore proposal = _proposals|proposalld];

getPastVotes(: account, uint256 timepo
state(proposalld) ProposalState.Active,

require(timepoint < clock(), "ERC
- return _checkpointsLookup(_checkpoints[account], timepoint);
uint256 weight = _getVotes(account, proposal.voteStart, params);

_countVote(proposalld, account, support, weight, params);

if (params.length (]

VoteCast(account, proposalld, support, weight, reason);

t VoteCastWithParams(account, proposalld, support, weight, reason, params);

countVote
proposal

2 account,
rn weight;

Proposalvote proposalVo = _proposalVotes|proposalld

!proposalvVote
1Vote.hasVoted

13

alvot

support

alvot
if (support
posalvote.abstainVi

Checking the vote succeeded

Governor.sol — GovernorCountingSimple.sol

_qu
Proposal

proposal.

1 ProposalState.Executed;

proposal.can

posalState.Canceled;
_voteSuc

ProposalVote

snapshot = pro
urn prop

56 currentTi clock(); —» GovernorVotesQuorumFraction.sol

currentTimepoint
eturn ProposalState.Pending;

quorum(uint2 timepoint

256 deadli = proposalDeadline(proposalld); token.getPastTotalSupply(timepoint) * quorumNumerator(timepoint)) / quorumDenominator();

—» ERC20Votes.sol

getPastTotalSupply(uint256 timepoint)
e(timepoint < clock(), "E 0 f o

5

_checkpointsLookup(_totalSupplyCheckpoints, timepoint);

. queue (
GovernorTimelockControl.sol S iaee ory Ltanaets,

[
Quevuing

bytes en calldatas,

bytes32 descriptionHash
) ; ver le returns (uint256)
Check the state of a pI’OpOSO/ uint256 proposalld = hashProposal(targets, values, calldatas, descriptionHash);
with the KDRDK)OS(]/I[) require(state(proposalld) == ProposalState.Succeeded, "Governor: proposal not successful");
B)/ the proposcl ID, uint256 delay = _timelock.getMinDelay();
the pI’OpOSCII can be verified _timelockIds[proposalld] = _timelock.hashOperationBatch(targets, values, calldatas, @, descrip

without soving the pI’OpOSOI content _timelock.scheduleBatch(targets, values, calldatas, 0, descriptionHash, delay);

emit ProposalQueued(proposalld, k.timestamp + delay);

return proposalld;

scheduleBatch

TimelockController.sol targets,

values,

payloads,

> predecessor,

salt,

56 delay
onlyRole(PROPOSER_ROLE

require(targets.length == values.length, "TimelockContrc

equire(targets.length == payloads.length, "TimelockCon

32 id = hashOperationBatch(targets, values, payloads, predecessor,

Schedule a proposal to gxecufe TR
C’ffer m’nDe/Oy for (uint256 i = @; i < targets.length; ++i

emit CallScheduled(id, i, targets[i], values[i], payloads[i], predecessor,

salt);

delay);

salt != bytes32(0)
emit CallSalt(id, salt);

_schedule(bytes32 id, uint256

Set the timestamp require(!isOperation(id), "TimelockCe
when the proposal is able to be executed after equire(delay >= getMinDelay(), "Tir

_timestamps[id]| = .timestamp + delay;

Checking the state of a proposal

TimelockController.sol

if fimesfomp[id] is uint256 internal constant _DONE_TIMESTAMP = uint256(1);
Ab:unsef(Vofe) napping(bytes32 => uint256) private _timestamps;
>1: queved (Queue)
I: done (Execute
() 1 isOperation(bytes32 id) public view virtual returns (bool) {

return getTimestamp(id) > ©;

—

Note.
queue() and execute() function
will not be called automatically

.. . L) isOperationPending(bytes32 id) public view virtual returns (bool) {
even after the condition is satisfied. P g(by) pEtURAS IS) 1

return getTimestamp(id) > _DONE_TIMESTAMP;

Someone should call the functions explicitly
and then check if they can be executed

tion isOperationReady(bytes32 id) public view virtual returns (bool) {
uint256 timestamp = getTimestamp(id);
return timestamp > _DONE_TIMESTAMP && timestamp <= block.timestamp;
}
isOperationDone(bytes32 id) public view virtual returns (bool) {
return getTimestamp(id) == _DONE_TIMESTAMP;
}
getTimestamp(bytes32 id) public view virtual returns (uint256) {

return _timestamps[id];

(]

Executing

TimelockController.sol

Only the executor role
can run the function

Only the executor role
can run the function

Check if the execution is ready

Send a tx request
to the target contract
with the ETH value and calldata

Check if minDelay has passed
since the voting ended

function executeBatch(

address calldata targets,
uint256 calldata values,
bytes calldata payloads,

bytes32 predecessor,
bytes32 salt

publie—payabl irtual onlyRoleOrOpenRole(EXECUTOR_ROLE) {
require(targets.length == values.length, "TimelockController: length mismatch");

s

require(targets.length == payloads.length, "TimelockController: length mismatch");
bytes32 id = hashOperationBatch(targets, values, payloads, predecessor, salt);

_beforeCall(id, predecessor);
for (uint256 i = @; i < targets.length; ++i
address target = targets[i];
uint256 value = values[i];
bytes calldata payload = payloads[i];
_execute(target, value, payload);
emit CallExecuted(id, i, target, value, payload);

_afterCall(id);

ks

function _execute(address target, uint256 value, bytes calldata data) internal v 1 {
bool success, = target.call{value: value}(data);
require(success, "TimelockController: underlying transaction reverted");

¥

function _beforeCall(bytes32 id, bytes32 predecessor) private view {
require(isOperationReady(id), "TimelockController: operation is not ready");
require(predecessor == bytes32(@) || isOperationDone(predecessor), "TimelockController:

Best practices to learn

« Create a main contract (Governor) and make it customizable through contract
inheritance and wrapper contracts.

« Set up roles to conftrol access to functions and set up states to control that only
functions that fit the state are executed.

« To save blockchain storage, don't store large input parameters(proposal content).
Instead, store only the hash value(proposalld) of the parameters. By hashing them in
function calls and checking if it is the same value as before, we can verify if the
parameter is the same in a series of function calls. The large parameters may be
stored offchain.

Upgradeable Coniracts

A smart contract is
immutable.

Can we upgrade
A smart contracte

Three options of upgrading

» Set upgradable parameters
e.g., setMiningRewards()

« Migrate all states and users from the old contract to the new one
e.g., Uniswap V1, V2, V3 (Migrate from V2 to V3)

» Use a proxy

https://support.uniswap.org/hc/en-us/articles/7423351004173-Migrate-Liquidity-from-Uniswap-V2-to-V3

How a proxy works to upgrade a contract

Implementation contract

Proxy
“ > fallback() Vi
upgrade()
User
A
Proxy
~ Admin V2
upgrade()
Admin

https://www.youtube.com/watchev=JgS|7iE4jA

DelegateCall

» DelegateCall is a low-level Solidity opcode that allows a contract to execute code from
another contract, but it using the state and the storage of the calling contract.

« The syntax for DelegateCall
(bool success, bytes memory returnData) = address.delegatecall(bytes memory dataq);

the address is the address of contract to execute, and the data is the encoded function call to execute

« Call vs. DelegateCall

states states
balance balance
Caller contrac;h Target contract Caller contrac Target contrac!
% <<cal>> <<call>> % <<call>> <<delegatecall>>
EOA EOA
msg.sender = EOA address msg.sender = Caller address msg.sender = EOA address | | msg.sender = EOA address
msg.value = EOA send value msg.value = Caller send value | msg.value = EOA send value : msg.value = EOA send value

ontext when the contract calls another contract vhen contract delegatecall another contract

https://https.//www linkedin.com/pulse/delegatecall-solidity-some-code-examples-johnny-time/

DelegateCall Example

DelegateCallExample.sol

£9,.8.9;

pragma

TargetContract { variable a will be stored

uint ic a; on CallerContract
setA(uint _a) {

a =3

ntract CallerContract {
address ic aAddress;
uint blic b;

r(address _aAddress) {
aAddress = _aAddress;

setA(uint _a) | {

bool success, = aAddress.delegatecall
i.encodeWithSignature("setA(uint256)", _a)
5
require(success,

"delegatecall failed");

setB(uint _b)
- _b;

Proxy.sol

pragma lidity ~0.8.9;

t Proxy {
address | te _implementation;

setImplementation(address implementation) exterr
_implementation = implementation;

fallback() te yable {
address impl = _implementation;
assembly

calldatacopy(@, @, calldatasize())
result := delegatecall(gas(), impl, ©, calldatasize(), 0, ©0)
returndatacopy(@, ©, returndatasize())
switch result
case 0 {
revert(@, returndatasize())

}
default {

return(@, returndatasize())
}

https://https://www linkedin.com/pulse/delegatecall-solidity-

some-code-examples-johnny-time/

Implementing Upgradeable coniracts
with OpenZeppelin & Hardhat

Implementation contracts

Same variable
Box.sol BoxV2.sol

2 pragma

uint

Shouldn't define
a constructor

Instead of a constructor,
use initialize()

initialize(uint _val)
val = _val;

New function

https://www.youtube.com/watch2v=JgSj7IiE4jA
https://github.com/t4sk/hello-oz-upgradeable

Deploy & Upgrade contracts

scripts/deploy_box_vl.js

{ ethers, upgrades } = require("hardhat");

main() {
Box = ait ethers.getContractFactory("“Box
console.log("Deploying Box..."); TransparentUpgradeableProxy
b = await upgrades.deployProxy(B ® 0x754447086363e85 avsososeen 396379 16 mins ago 0X20EfDA. 5b7dFBda Contract Creation
initializer: "initialize", ® 0xBB55{4{9d0ed0285c oxs0808040 3496377 16 minsago OX20EfDA...Sb7FBda Contract Creation ProxyAdmin
® 0x691d75f1 c4abff1a0 OxBOS0BOAD

16 mins ago Ox20EfDA...Sb7dFBda Create: Box Box

console.log(ed to:", box.addre Etherscan: https://sepolia.etherscan.io/address/0x20efda938e7c1bf25ba7dcéb7a4ac8075b7dfbda

main();

scripts/upgrade_box_v2.js

- { ethers, upgrades } = require("hardhat");
PROXY = "@Xx

main() {

ProxyAdmin.upgrade()
V2 = await : ("B
BoxV2 await ethers.getContractFactory("B @ Ox6fefedb6d6939f5e67 Upgrade 3496447 37 secs ago 0x20EfDA...5b7dFBda OxEc76e1..78142B93
@ 0xbc21d899c0057e61 Dx60BOG040 3496446 1 min ago 0x20EfDA...5b7dFBda Contract Creation
console.log("Box upgr : BoxV2

Etherscan: https://sepolia.etherscan.io/address/0x20efda938e7c1bf25ba7dcéb7a4ac8075b7dfbda

main();

Transactions Token Transfers (ERC-20) W Events R U n C o ntrq Cts WIth eth ersc q n

TransparentUpgradeableProxy

Read Contract ~ Write Contract ~ Read as Proxy Write as Proxy https://sepolia.etherscan.io/address/0x2c384ee352eea99fc8bsddc7eéb5664397ced172#code

Similar Match Source Code (2

Note: This contract matches the deployed ByteCpde of the Source Code for Contrad\Qx73C9B8...5f3460F5

Contract Name: TransparentUpgradeableProxy Optimi

Compiler Version v0.8.9+col

Transactions Token Transfers (ERC-20) Events

Transactions Token Transfers (ERC-20) W

Code Read Contract Write Contract JUCELECIIOUN Write as Proxy Code Read Contract Write Contract Read as Proxy
ABI for the implementation contract at 0x296edded27e9c081762a1627dddeb999f09¢cd18e, t ABI for the implementation contract at 0x296edded27e9c081762a1627dddeb999f09cd18e,
Previously recorded to be on 0x8e6f7b6efffb21aa320909e90d5613ac7fe796f4. Previously recorded to be on 0x8e6f7b6efffb212a320909e90d5613ac7fe796f4.

@ Connect to Web3 @ Connected - Web3 [0x20Ef... FBda]

Read Contract Information
1. inc (0x371303c0)
1. val

43 uint256

https://sepolia.etherscan.io/address/0x2c384ee352eea99fc8b6ddc7e6b5664397ced172#code

hardhat.config.js

require(
require(

dotenv.config();

ul
solidity: "
networks: {
sepolia:
url: "htt

accounts: [process.env

ts
etherscan: {

apiKey: process.env.ETHE

hardhat config file and commands

commands

// install hardhat
npm install --save-dev hardhat
npx hardhat
an empty hardhat.config.js

// install packages
npm install --save-dev @nomicfoundation/hardhat-toolbox
npm install @openzeppelin/contracts
npm install @openzeppelin/contracts-upgradeable
npm install @openzeppelin/hardhat-upgrades
npm install dotenv
and set up .env file

// compile and deploy
npx hardhat compile

// deploy the Box contract

npx hardhat run --network sepolia .\scripts\deploy_box_v1.js

// verify the Box code to etherscan

npx hardhat verify --network sepolia @x8E6F7b6efffb21aA320909E90d5613ac7fe796F4

// deploy the BoxV2 contract

npx hardhat run --network sepolia .\scripts\upgrade_box_v2.js

// verify the BoxV2 code to etherscan

npx hardhat verify --network sepolia ©x296eDded27E9c©81762a1627DDDEb999F@9cD18e

Upgradeable
ERC20 tokens

https://www.youtube.com/watch2v=Vt20jCu80C8
https://github.com/t4sk/hello-oz-upgradeable

m ERC721 ERC1155

SETTINGS

Name Symbol
MyToken MTK

Premint

0

FEATURES
Mintable
0J Burnable
0 Pausable
Permit

O Votes

O Flash Minting

O Snapshots

ACCESS CONTROL

® Ownable

O Roles

UPGRADEABILITY

® Transparent

Governor

Custom @ Copy to Clipboard @ Open in Remix ¥ Download

~t "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgr
@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.so
"@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.so

t MyToken is Initializable, ERC2@Upgradeable, OwnableUpgradeable

onstructor() {

_disableInitializers();

ion initial) initia
__ERC20_init("MyToken",
__Ownable_init();

nint
_mint(to, amount);

https://docs.openzeppelin.com/contracts/4.x/wizard

Restrictions of upgradeable contracts

Use initialize(), a regular function to run all the setup logic instead of a constructor

Inherit an Initializable contract and use an initializer modifier in order not to call initialize ()
multiple tfimes

Avoid initial values in field declarations. Make sure that all initial values are set in an
initializer function (ok to define constant state variables)

Invoke the _disablelnitializers function in the constructor to automatically lock it when it is
deployed

Use @openzeppelin/contracts-upgradeable for libraries and contracts instead of
@openzeppelin/contracts

You cannot change the order in which the contract state variables are declared, nor
their type. If you need to infroduce a new variable, make sure you always do so at the

end.

Read OpenZeppelin docs for more restrictions

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

Wrap-up

We Learned

Access Control

Onchain governance

Developing onchain governance with Open’Zeppelin
Technical detail on OpenZeppelin governance
Upgradeable contract

Developing upgradeable contract with OpenZeppelin

Revisit: Web3 Stack from the first lecture

Web3 App Content Meta Social
Layer &IP verse Media In terms of web3 technology,
we covered three layers

from the bottom.

Protocol Social Confent Finance You had a skill to develop
Layer [Idenhfy] [Graph] [Publishing] [Gome] [(DeFi)] [Commerce] your own basic web3 apps

Governance Lecture 19
Community | | Tokenomics | | Governance | | bAO || DAO Tools | ACCess control,
Layer on-chain governance,

upgradeable contracts

Fungible Asset Non-Fungible Asset Security Lecture 15, 17

Asset non-standard token, ERC20,
Layer ; NFT Security ERC721(NFT), ERC1155,

V4 Cryptocurrency Stablecoin SBT Token ERC5192(SBT), Oracle, IPFS

.) Lecture 1 -12

Foundation Blockchain Smart Contract L1/L2 IKP Wallet Web3 staaks, blockchain tech,
Layer programming solidity,
Distributed File System Oracle Interchain Bridge Browser smart contracts, building dapps,

web3 security

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55

