
Developing

ERC20 fungible assets

Jason Han, Ph.D
Adjunct Professor of KAIST School of Computing

Founder of Ground X & Klaytn

web3classdao@gmail.com

http://web3classdao.xyz/kaist/

Lecture 15 (2023-05-03)

Building Web3 & Blockchain Applications
(CS492 Special Topics in Computer Science)
Spring 2023

Today’s Lecture 15 Overview

• Lecture Objective

- Learning how to mint fungible tokens and get eth for funding

- Understanding the concept of oracle and how to use Chainlink

- Understanding ERC20 and how to create ERC20 tokens

- Learning various ways to interact between contracts

• Lecture will cover

- Depoit and withdraw of eth

- Library, inheritance, interaction between contracts

- Oracle and chainlink data feed

- ERC20 standard and how to implement ERC20 tokens

- Interacting with ERC20 tokens

• Ultimate Web3, Full Stack Solidity, and Smart Contract Course by Patrick Collins

- Lesson 4: Remix Fund Me

- Lesson 12: Hardhat ERC20s

• Chainlink Presentation

• Chainlink tutorial: consuming data feeds

• Solidity Library by Jean Cvllr

• What is ERC-20? by thirdweb

• Ethereum EIP-20

• OpenZeppelin ERC20 docs

• OpenZeppelin ERC20 codes

References for the lecture

https://github.com/smartcontractkit/full-blockchain-solidity-course-js
https://github.com/smartcontractkit/full-blockchain-solidity-course-js#lesson-4-remix-fund-me
https://github.com/smartcontractkit/full-blockchain-solidity-course-js#lesson-12-hardhat-erc20s
https://www.slideshare.net/VanessaCurman/chainlink-presentation
https://docs.chain.link/getting-started/consuming-data-feeds/
https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9
https://blog.thirdweb.com/what-is-erc-20-token/
https://eips.ethereum.org/EIPS/eip-20
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC20

A simple crowdfunding contracts
Examples from Patrick Collins’ web3 course

with some modification

Clone the code here!
git clone https://github.com/web3classdao/fungible-tokens.git

Recap: Token example in Lecture 10

• Implemented a simple token contract

• Minted all tokens to the contract owner
• Others should get tokens from a faucet

Recap: Token example code

Minting tokens initially

a main data store for tokens

Token transfer is just all about

increasing and decreasing balances

as an atomic operation

Token.sol

Added features
1) Deposit fund with eth and return equivalent tokens

2) Withdraw funded eth and reset funders’ data

3) Implement receive() and fallback()

Improvement 1. Getting fund with eth

1) Deposit fund funder data

(Optional)

payable

let the function accept eth

msg.value

number of wei sent with the message

Ether units

wei is the basic unit

1 gwei = 10 ** 9 wei

1 ether = 10 ** 18 wei

adjusting balances

automically

TokenFundEth.sol

2) Withdraw fund

modifier

only owner can run withdraw()

contract’s eth balance

Sending eth

call is the recommended way

3 ways to send eth

• transfer (2300 gas limit, throws error)

• send (2300 gas limit, returns bool)

• call (forward all gas or set gas, returns bool)

※ 2300 gas limit is hardcoded to prevent reentrancy attacts
call is the recommended way in combination with re-entrancy guard

https://solidity-by-example.org/sending-ether/

3) receive() & fallback()

What if someone send eth to a contract
without calling a function of the contract?

receive() and fallback()
special functions that is executed either when
1) a function that does not exist is called or
2) Ether is sent directly to a contract

https://solidity-by-example.org/sending-ether/

https://solidity-by-example.org/fallback/

constructor()

fund()

transfer()

withdraw()

Funder

receive()

fallback()

Contract Owner

Context to call functions

TokenFundEth contract

Invalid calls

Added features
1) Get a price feed of ETH/USD from the chainlink contract

2) Call a library function

Improvement 2. Funding with eth equivalent to USD

Fix the token price to the dollar, (e.g., 1 MTT = 1 USD)

returning as many tokens as

the current USD value of eth received.

Challenge

The price of eth changes all the time.

How do a contract get the correct price

off the blockchain?

Oracle Issue

https://www.slideshare.net/VanessaCurman/chainlink-presentation

https://www.slideshare.net/VanessaCurman/chainlink-presentation

https://www.slideshare.net/VanessaCurman/chainlink-presentation

https://www.slideshare.net/VanessaCurman/chainlink-presentation

https://www.slideshare.net/VanessaCurman/chainlink-presentation

https://www.slideshare.net/VanessaCurman/chainlink-presentation

How to feed external data

https://www.slideshare.net/VanessaCurman/chainlink-presentation

https://data.chain.link/ethereum/mainnet/crypto-usd/eth-usd

ETH/USD Data Feed

https://docs.chain.link/getting-started/consuming-data-feeds/

https://docs.chain.link/data-feeds/api-reference/

Reading data feeds on-chain

Proxy aggregator contract

for ETH/USD in Sepolia

AggregatorV3Interface defines

all v3 Aggregators have the function getLatestPrice()

Get the data from the latest round

the result will be in 8 decimals

place a decimal point before the last 8 digits

e.g., 190748000000
→ 1907.48000000 USD

PriceConsumerV3.sol

https://docs.chain.link/data-feeds/price-feeds/addresses

Creating a library

Library

Embedded library

contains only internal functions

The answer will be in 8 decimals,

so, add 10 more decimals

to unify the units

(10 ** 18) * (10 ** 18) / (10 ** 18)

= (10 ** 18): 18 decimals

PriceConverter.sol

Using a library in a smart contract

importing a library

using LibraryName for Type

to attach library functions to Type

any Type variables can use library functions

Modified part of the previous TokenFundEth.sol

msg.value (uint256)

call the library function

TokenFundUsd.sol

Solidity Library

• Solidity library

- A different type of smart contract that contains reusable code

- Once deployed on the blockchain (only once), it is assigned a specific address

- Its properties / methods can be reused many times by other contracts

• Why using libraries

- Reusable: save development time and resources

- Economical: save gas by using already deployed libraries

- Robust: protect contracts with well-written libraries and established best practices

https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9

https://docs.soliditylang.org/en/v0.8.19/contracts.html#libraries

Limitations in Solidity Library

• Solidity libraries are considered stateless

• They do not have any storage (so can’t have non-constant state variables)

• They can’t hold ethers (so can’t have a fallback function)

• Doesn’t allow payable functions (since they can’t hold ethers)

• Cannot inherit nor be inherited

• Can’t be destroyed (no selfdestruct() function since version 0.4.20)

→ It should only be used to perform simple operations based on input and returns

result

https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9

Two Types of Solidity Library

• Embedded library

- A library which have only internal functions

- The EVM simply embeds library into the contract

- It simply uses JUMP statement(normal method call) instead of using delegate call

• Linked library

- A library which have public or external functions

- A library needs to be deployed and will get a unique address in the blockchain

- This address needs to be linked with calling contract

- Calling a function from a library will use a special instruction in the EVM:

DELEGATECALL opcode

- This will cause the calling context to be passed to the library, like if it was some code

running in the contract itself

→ this, msg.sender, msg.value, and etc will have values of the calling contract

https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9

Linked library

Example

address(this) in mult() of MathLib

returns

the Example contract address

not the MathLib address

https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9

LinkedLibraryExample.sol

Useful Solidity Libraries from OpenZeppelin

• access/Ownable.sol: provide onlyOwner() modifier

• access/AccessControl.sol: provide role-based access control

• utils/math/Math.sol: standard math library such as sqrt() and log2()

• utils/Address.sol: Collection of functions related to the address type

• utils/Counters.sol: Provides counters that can only be incremented, decremented or

reset

• utils/Strings.sol: String operations such as toString() and toHexString()

• utils/Multicall.sol: Provides a function to batch together multiple calls in a single

external call

https://docs.openzeppelin.com/contracts/4.x/access-control

https://docs.openzeppelin.com/contracts/4.x/utilities

https://docs.openzeppelin.com/contracts/4.x/api/utils

https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/utils

Added features
1) Minting MTT tokens as ERC20

2) Distribute MTT tokens to the funders of eth

Improvement 3. Minting ERC20 tokens

We minted our token, MTT.

However, we can’t see them in Metamask

and connect them to DeFi apps.

WHY?

Our token implementation is not the standard way

ERC20 Token

ERC20 Token Standard

• ERC20: a standard interface(format) for fungible assets(tokens) on the Ethereum

“fungible” means each token be exactly the same as another token

• Benefits of ERC20 tokens

- Standardization: saving time and resources to develop

- Interoperability: easily interact with various wallets, exchanges, and decentralized

applications (dApps) on the Ethereum

- Security: extensively tested and reviewed by the Ethereum community

- Programmability: can be tailored to serve a specific purpose or function, making

them suitable for a wide range of applications

- Transparency: easy tracking and verification of ERC20 token transactions

- Borderless transactions: facilitate seamless, borderless transactions without the

need for intermediaries

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/

https://blog.thirdweb.com/what-is-erc-20-token/

Interface of the ERC20 standard

https://eips.ethereum.org/EIPS/eip-20

https://ethereum.org/en/developers/tutorials/erc20-annotated-code/

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol

functions allowing other contracts to transfer tokens on your behalf

Implementing

ERC20 Token
from scratch

the number of decimals

used to get its user representation.

For example, if `decimals` equals `2`,

a balance of `505` tokens should

be displayed to a user

as `5.05` (`505 / 10 ** 2`)

Tokens usually opt for a value of 18,

imitating the relationship

between Ether and Wei

1 ether = 10 ** 18 wei

An account can allow contracts

to transfer tokens on its behalf

_allowance stores

the addresses authorized to spend

and the max amount they can spend

https://github.com/PatrickAlphaC/hardhat-erc20-
fcc/blob/main/contracts/ManualToken.sol

ManualERC20Token.sol

Adjust balances

between the sender and

the receiver

in atomic operation

Sending tokens

Set the max amount allowed to spend

by _spender account

on behalf of msg.sender

Called by the account owner

Check the allowance of msg.sender

then, transfer tokens

(adjusting balances of _from and _to)

Called by the delegator

usually contracts

like DeFi

Delegating to send tokens

constructor()

transfer()

transferFrom()

Funder

Contract Owner

Context to call functions

ERC20Token contract

DeFi contract

approve()

some_funcs()

Burning tokens (optional)

Burning tokens is just

the same as decreasing tokens

from the balances

without increasing them somewhere

Called by the account owner

Check the allowance of msg.sender

then, burn tokens

Called by the delegator

Too Complicated?

Don’t worry. There are

reference implementations of ERC20 token

Inherit OpenZeppelin ERC20 Implementation
to create your own ERC20 token

1 million ERC20 token (MTT) in 12 lines of code!

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

SimpleERC20Token.sol

Getting fund with ERC20 tokens

Previously, we just adjusted balances

for distributing tokens.

However, it’s not possible in ERC20

since balances is private

In order to change balances,

we need to use _mint(), transfer(),

transferFrom()

Two ways to implement

1) using _mint() in ERC20 token contract itself
2) calling transfer() in a separate contract

(calling a smart contract from another smart contract)

1) using _mint() in ERC20 token contract itself

set a maximum supply

since totalSupply will start at 0

and increase with every minting

msg.senders mint tokens

themselves

Problem)

totalSupply is not fixed

Problem)

funder mint tokens directly

MTTTokenMint.sol

2) calling transfer() in a separate contract

Implementing a ERC20 token

Another contract will call the mint function

MTTToken.sol (callee contract)

All tokens will be minted to

a caller contract

https://blog.chain.link/smart-contract-call-another-smart-contract/

MTTTokenFund.sol

(caller contract)

Initialize a contract variable with

MTTToken contract address

Minting all tokens

to this caller contract

This caller contract call

the transfer() of MTTToken

in the caller’s context

(msg.sender is the caller contract)

Question) Is it safe?

After creating the MTTToken contract,

any contracts can call mintToken().

We can’t guarantee

the MTTTokenFund contract will be the first caller.

Both creating the token contract and minting tokens

should be an atomic operation
→ Creating a smart contract from another contract

MTTTokenFactory.sol

MTTToken: callee contract

MTTTokenFactory: caller contract

create the token contract

with input parameters

given by the caller contract

mint all tokens to the caller contract

the token contract variable

create new token contract

with this caller contract as an owner

This caller contract call

the transfer() of MTTToken

in the caller’s context

(msg.sender is the caller contract)

constructor()

transfer()
Funder

Contract Owner

Context to call functions

ERC20TokenMTTTokenFactory

constructor()

fund()
msg.sender

= address(MTTTokenFactory)

owner

= address(MTTTokenFactory)

Create

ERC20 Token Use Cases

• Utility tokens: Tokens that provide access to a project's platform or services such as

Basic Attention Token (BAT) for the Brave browser ecosystem.

• Governance tokens: Tokens that grant holders voting rights in decentralized

organizations, like Maker (MKR).

• Stablecoins: Tokens pegged to traditional currencies, such as USD Coin (USDC).

• Asset-backed tokens: Tokens representing ownership of physical or digital assets, like

tokenized gold or real estate.

• In-game currencies and items: ERC-20 tokens can be used for virtual currencies or

items within video games, streamlining the management of in-game economies.

https://blog.thirdweb.com/what-is-erc-20-token/

https://etherscan.io/tokens

Wrap-up

We Learned

• Two crowdfunding contracts

- using non-ERC20 tokens

- using ERC20 tokens

• Sending eth

• Solidity Library

• Calling a function of another contract

• Creating another contract from a contract

• Oracle and chainlink data feed
• ERC20 token standard

• Use cases of ERC20 tokens

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51

