Web3 Security

Adventure to Safer Web3 World

Brian Pak / Juno Im

O ChainlLight

Introduction

Brian Pak

k=

70+ wins in international hacking competitions
Including 6-time wins on DEFCON CTF
Winners of Paradigm CTF & Numen CTF (Web3)

Multiple vulnerabilities reported

Various global vendors and open-source projects
Ethereum vulnerability bounty leaderboard

€ Theori

O ChainLight

JunoIm

9Fe

Agenda

Cyber
Security

4

Solidity
Security

Blockchain

X
Security

5

Real World
Examples

3

Security
Threats in
Web3

6

Future-proof
Security

Cybersecurity

Security in Cyberspace

< Theori

Cyberspace

Virtual environment with systems

Cyberspace

i‘
]

r connected world .
P ' e LR p— .
. o .e- - = » . e 3

Evolution of Cyberspace

1982

First appeared in cyberpunk

fiction, authored by William . ,
Gibson Initially developed in 1960s

by the US DoD for military

Gibson described it as an Pl

online computer network
> Later expanded into the

commercial networks and

enterprises market | QI

The Internet

Early 90s

5000 b

4000 I
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 N\ ‘7 %

3000

Late 90s; Early 2000
0

2000

1000

Cloud infrastructure

Massive growth in Internet adoption with
lots of money (VCs) and start-ups Microservice Architecture

E-commerce, communications, finance, ads Blockchain (Web3) popularized

2023

899 N
667 IR
|
XA |
I |

AN |
et |
L8¢€ |
102 |
86 |
89
A
9T

5000
2000
1000

6000
4000
3000

Evolution of Cyberspace

B Number of Internet users in millions

https://datareportal.com/global-digital-overview

Current State of Cyberspace

Current State of Cyberspace

Rise of cybersecurity threats in
every digital technology
IS a

Threats in Industry

Game

« Web & Mobile applications « Web & Mobile applications » Cheats / Anti-cheat

« Cloud infrastructure « Financial information « |PTheft

« CI/CD pipeline (DevOps) « Security “solutions” * Web applications
Automotive Web3

e Embedded hardware « Centralized Exchanges (CEX)

* Firmware * Decentralized Finance (DeFi)

» Physical security * Non-Fungible Tokens (NFTs)

 Blockchain / Smart contracts

Blockchain x Security

Building Trust and Integrity in Blockchain

< Theori

Blockchain x Security

Blockchain provides some strong guarantees

Immutable Distributed /
Decentralized
Transparent Secure

Blockchain x Security

New paradigm, new appeared

Blockchain x Security

New attack surfaces and threat models arise

Blockchain x Security

One tiny mistake can cost a fortune

But, there are ways to make things more secure

Bug bounties Security audits

Blockchain x Security

Project teams may not be well-tunded

Qv

|||£ I
®

Security Threats in Web3

Potential Threats and Challenges

< Theori

Security Threats in Web3

Smart Blockchain
Contracts Network
Infrastructure Centralization

& Off-chain Risks

Security Threats in Web3

Smart Contracts

“* Reentrancy

“ Insufficient ACL

% Integer overflow / underflow
“ Financial engineering attacks
“ Insecure governance model

“ Logic bugs

Security Threats in Web3

Blockchain Network @GR ED

¢ Denial of Service
~~~~~~~~~~~~~~ *» Precompiled Smart Contracts bugs
~~~~~~~ *» Remote Code Execution
“ P2P Eclipse attack
% Consensus issues (Chain splits)

¢ Maximum (Miner) Extractable Value

Security Threats in Web3

Infrastructure & Off-chain

“ Front-end web vulnerabilities
“ Key management

“* Lack of user input validation
“ Events and log parsing

“ Phishing

% State-sponsored cyber attacks

Security Threats in Web3

ﬁ

Centralization Risks

* Backdoors

“* Rug pull

% Scams

“* Majority attacks
“+ Upgradeability

Smart Contracts Security

Smart # Secure

< Theori

"Smart” Contracts

Smart Contracts

executed via computerized transactions

Concept proposed by Nick Szabo in 1994
Plays a "brain" role and enables application development

Most blockchains support smart contracts (e.g. Ethereum, Aptos, Solana)

"Smart” Contracts

Smart Contracts

executed via computerized transactions

Observability
Verifiability Enforceability

Ethereum Virtual Machine (EVM)

program
counter (PC)

gas
available

stack

memory

Why Gas?

The World's Computer

% Programmable, decentralized state-machine

% Turing-complete smart contracts can be
executed

% Decentralized computing platform!
% EVM Architecture
% Stack-based VM

< Gas as "fee”

Ethereum blockchain uses fees as fuel for executing smart contracts
Gas usage is limited, and prices are adjusted according to market economics to ensure network stability

Solidity

Decentralized app (DApp) development language in EVM-based blockchain

% Similar syntax as JavaScript, Java, Go

% Basic programming structure

% Arithmetic operations, types, constants and variables, control statements, function calls,

memory, basic data structures, error handling, etc. Compiled to Bytecode

% Reserved keywords and global variables to access blockchain info

OX608060405234801561001057600080Fd5b506101b480610020
// SPDX-License-Identifier: UNLICENSED 60003960003 fe608060405234801561001057600080Fd5h5060

. . 04361061002b5760003560e01c8063771602F714610030575b60
pragma solidity ©.8.16; 0080fd5b61004a600480360381019061004591906100b1565b61
0060565b6040516100579190610100565b60405180910390F35b

. 6000818361006e919061014a565b905092915050565b600080Fd
contract Theor‘lRulgs {)) 5b60008190509190950565b61008e8161007b565b811461009957
function add(uint a, uint b) external pure returns(uint) { 600080fd5b50565b6000813590506100ab81610085565b929150
return a+b; 50565b600080604083850312156100c8576100c7610076565b5b

} 60006100d68582860161009c565b92505060206100e785828601

61009c565b9150509250929050565b61001a8161007b565b8252
} 5050565b60006020820190506101156000830184610011565b92
915050565b714e487b710000000000000. . .

Smart Contracts Security

“*We will be focusing on Solidity code

“*Most of the smart contracts are deployed on EVM compatible chain and
written in Solidity

“*Smart Contract Weaknesses
“SWC-101: Integer overflow / underflow
“*SWC-107: Reentrancy
“SWC-136: Unencrypted Private Data On-Chain
“SWC-128: DoS With Block Gas Limit
“SWC-122: Lack of Proper Signature Verification
“SWC-113: DoS with Failed Call

Integer overflow / underflow

39999 ”

2 f!N Dg?h

D

P RNDLaL |

XGOOO@
P R N DLz L

Integer overflow / underflow

Type
char
unsigned char

signed char

int

unsigned int
short
unsigned short
long

unsigned long

Storage size
1 byte
1 byte

1 byte

2 or 4 bytes

2 or 4 bytes
2 bytes
2 bytes
4 bytes

4 bytes

Value range
-128 to 127 or 0 to 255
0 to 255
-128 to 127

-32,768 to 32,767 or -2,147,483,648 to
2,147,483,647

0 to 65,535 or 0 to 4,294,967,295
-32,768 to 32,767
0 to 65,535
-2,147,483,648 to 2,147,483,647

0 to 4,294,967,295

Integer overflow / underflow - Example

1 function transfer(address to, uint256 amount) exteranl {
require(balance[msg.sender] - amount = 0, "Not enough user

balance[msg.sender] -= amount;
balance[to] += amount;

3

Integer overflow / underflow - Example

1 function transfer(address to, uint256 amount) exteranl {
require(balance[msg.sender] - amount = 0, "Not enough user

balance[msg.sender] -= amour
balance[to] += amount;

}

Integer overflow / underflow - Remediation

“*From solidity 0.8.0, compiler add safeguards on the entire of
arithmetic calculations ON Dec 16, 2020.

Solidity Programming Language
https://blog.soliditylang.org » 2020/12/16 » solidity-v...

Solidity 0.8.0 Release Announcement
Dec 16, 2020 — Solidity 0.8.0 is a breaking release of the Solidity compiler and language.

Some of the new features of this release have been elaborated in ...

Reentrancy

“*Any interaction from a contract (A) with another contract (B) and
any transfer of Ether hands over control to that contract (B).

“*This makes it possible for B to call back into A before this
interaction is completed.

“*To give an example, the following code contains a bug (it is just a
snippet and not a complete contract):

Reentrancy - Example

] function withdrawAll(address to) exteranl {
require(balance[msg.sender] > 0, "Not enough user balance.");

payable(to).call{vs ralance[msg.sender]}(hex"");

balance[msqg.sender] =

L

Reentrancy - Example

Contract

function mlthdrawAll(address to) exteranl
require(balance[m : 5

payable(to).call{value:

Attacker Contract

balance |

Vulnerable Contract

Reentrancy - Remediation

“*Checks-Effects-Interactions pattern
“*https://docs.soliditylang.org/en/v0.6.11/security-considerations.html|

2900

| function withdrawAll(address to) exteranl { Check
PGQUiPG(GQl?WCC[!.,.]L; er] > , "Not enough user balance.");

payable(to).call{value: balance[msg.sender]}(he) INtéraction

balance[msg.sende

7}

https://docs.soliditylang.org/en/v0.6.11/security-considerations.html

Reentrancy - Remediation

*Non-reentrant modifier (mutex)
“*Enforce limits on call to the same function among the same call stack.

200

Adding lock here

| function withdrawAll(address to) exteranl
require(balance[msg.sender] > 0, "Not enough user balance.");

payable(to).call{value: balance[msg.sender]}(hex"");

balance[msg.sende

7}

DoS With Block Gas Limit

“*User pays “Gas” as a transaction fee.
“*Block has a limitation of maximum gas, Gas Limit.

(® Gas Used: 14,425,218(48.08%) ’ -4% Gas Target

(3 Gas Limit: 30,000,000

(® Base Fee Per Gas: 0.000000017961109962 ETH (17.961109962 Gwei)
(® Burnt Fees: ¢ 0.259092926723821716 ETH

(® Extra Data: 0x (Hex:Null)

(® Ether Price: $1,859.71/ETH

DoS With Block Gas Limit

function updateUserInfoByName(string calldata userName, uint256 age) external {
for (uint256 i=0; i<users.length; i+) {
if (keccak256(users[i].name) = keccak256(abi.encodePacked(userName))) A

break;

}
Iy

1
2
3
4 users[i].age = age;
5
6
7/
3

}.

DoS With Block Gas Limit - Remediation

fHASHMAP
&

IIASIIMAI’ EVEIIYWIIEIIE'

DoS With Block Gas Limit - Remediation

1 mapping(bytes32=uint256) userNameToIndex;

2 function updateUserlintoByName(String caccdata userName, uint256 age) external {
3 users[userNameToIndex(keccak256(userName))].age = age;

4 }

Real-world Incidents

< Theori

Real World Case I: Phishing

Low technical difficulty, but highly effective attack

GOOQIC alpaca finance
Continue with Seed Phrase

bod

QHY @HA DOOXN [HSY QX :Cw

ZAiZ 3t ok 3680,0007H (0.42=x)

2L 8I=0] AMZ ot ZHMBHL[C SHEHFAIM M AN E XIFE + AELICE

= — =

2k - https://appalpaca.alpacamills.co/

Alpaca FInance - Alpaca Finance (FARM)

FARM powers Alpaca Finance, a yield optimizer that moves funds around the ecosystem.
About Us - View All Products - Get In Touch

VA

https://app.alpacafinance.org > farm

Farm - Alpaca Finance Interface

Alpaca Finance is a leveraged yield farming product, and using leveraged products involves certain
risks. Please read here to understand these risks. As a user ...

Real World Case I: Phishing

Low technical difficulty, but highly effective attack

4" E) Ethereum Mainnet Balance
Account1 OETH

0 A Yourf isk
People studied no one (even Metamask) asks for seed phrases our funds may be at ris

- Account 1(0x0b2...cc08)

They started to ask you “sign” something. (= tx hash)

Signing this message could be dangerous.
. You may be giving total control of your
FO rmore d eta | | S: account and assets to the party on the other
end of this message. That means they could
drain your account at any time. Proceed with
caution. Learn more.

https://blog.chainlight.io/si-vis-pacem-para-bellum-exploring-

metamask-phishing-4605425d80a7 1 “ I

7
N

https://blog.chainlight.io/si-vis-pacem-para-bellum-exploring-metamask-phishing-4605425d80a7
https://blog.chainlight.io/si-vis-pacem-para-bellum-exploring-metamask-phishing-4605425d80a7

Real World Case ll: Harvest Finance

& $33.8M of losses ($24M to attacker)

X Classic example of| price oracle|attack with a flas

& The attacker successfully gained profit with 10 ETH

% Swap to increase price of USDC token
(USDT = USDC) [0xc6028a9fa486152¢fd2. .

[0xc6028a9fa486f52efd2...
% Deposit USDC into Vault

[0xc6028a9fa486f52efd2. ..

[® oxc6028a9fa486f52efd2...

% Swap to decrease price of USDC token
(USDC = USDT) [0xc6028a9fa486f52efd2. ..

[0xc6028a9fa486f52efd2. ..

»» Withdraw USDC from Vault —

(price is lower, so we get more USDC) R

< [0xc6028a9fa486f52efd2. ..
** Repeat

@ Tornado.Cash: 10 ETH

n loan

Harvest.F

Harvest.F

Harvest.F

Harvest.Fi

Harvest.F

Harvest.F

Harvest.F

Harvest.F

Harvest.F

Harvest.F

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

inance: Hacker 1

[T\
@ =

(o

20 Ether

20 Ether

20 Ether

20 Ether

20 Ether

20 Ether

20 Ether

20 Ether

20 Ether

9.984 Ether

Flash borrow 18M USDT and
50M USDC

Swap 17M USDT to USDC

Deposit 50M USDC & Receive
52M pool tokens

Swap 17M USDC to USDT

Withdraw 50.8M USDC with
52M pool tokens

Repay flash loans
= $500K profit

Curve
yUSD pool

Real World Case Ill: Nomad Bridge

NOMAD

< $190M of losses

X "Every-man-for-himself” as everyone copied the attack

(First crowd hacking..?) .
:Qool [3 Nomad : ERC20 Bri idge
it Code upgrade added a bug —
% Special cases were added for “legacy” messages Storas ercn
% Failed to handle special case of None (0x0) @ ncas s

> .
N 74

& By itself, not exploitable, except...
% During initialization, 0x0 was accidentally set as a trusted Merkle root
% On Ethereum, uninitialized storage defaults to 0x0

% All messages with an uninitialized root are now valid!

Real World Case IV: Ronin Network

B Ronin

X State-sponsored attack (North Korea); Broke “multisig”

7 $624M of losses

2) Bridge contract used a 5 of 9 signature check
% 5 validators must sign a message

9 total validators

% 4 validators were run by ONE company

< 1 additional validator approved that company to sign on its behalf... %

& Hack 1 company = Control 5 of 9 validators = Profit

Real World Case V: KLAYswap

Attackers exploit fundamental flaw in the web’s
security to steal $2 million in cryptocurrency

MARCH 9, 2022 BY HENRY BIRGE-LEE &

o

Do
t .~
S KLAYswap v@LG U+

Real World Case V: KLAYswap

<& $2M of losses

X Infrastructure & Web2 compromise = Damage in Web3
(Web3 Smart Contract was SAFU &)

% BGP hijack resulting in front-end loading attacker’s code

W SSL/TLS bypass possible with i and H ZerossL
"2 KLAYswap used CloudFlare

% More difficult to hijack as CloudFlare is widely announced

% Instead, attacker targeted a library hosted on a third-party server

Real World Case V: KLAYswap

Celer Network hacked with BGP hijack 7 months later =
% Hosted on Amazon AWS, but still vulnerable to BGP hijack

Celer Network cBridge Users Lose $240k in DNS
Hijack, CELR Lists on Coinbase

BGP hijacks are going away.

Protocols must take |

Real World Incidents - Hands on exercise

“»Testing environment setup: GitHub Codespace + foundry-rs

“*Hands on exercise: Code with me
“*Reentrancy Bug Easy
“*Reentrancy Bug Hard
“*Integer Over/Underflow

Real World Incidents - Hands on exercise

“*"Foundry”: blazing fast, portable and moﬁular toolkit for Ethereum
application development written in Rust
“*Fast & flexible compilation pipeline
“*Tests are written in Solidity
“*Fast fuzz testing
“»Fast remote RPC forking mode
“*Flexible debug logging
“*Portable (5-10MB) & easy to install
“*Fast Cl

“*Test like a pro (KR):
https://www.youtube.com/watch?v=C8V8mIxwgXI&t=1731s

https://www.youtube.com/watch?v=C8V8mlxwgXI&t=1731s

Hands on exercise - Create your own testbed

* https://github.com/chainlight-io/web3kaist-hands-on

1ainlight-io / web3kaist-hands-on ' public template X EditPins v ® Watc

ode () Issues 1% Pullrequests () Actions [Projects [0 wiki @ Security [~ Insights 3 Settings

¥ main ~ ¥ 1branch © 3tags Go to file Add file ~ <> Code Use this template ~

Create a new repository

@ junomonster Fix typo bf18dd5 12 Open in a codespace

M .github/workflows Fix typo 12 hours ago
B lib/forge-std Init repo 12 hours ago
m script Init repo 12 hours ago
I src Init repo 12 hours ago
I test Init repo 12 hours ago
Y .gitignore Init repo 12 hours ago
[foundry.toml Init repo 12 hours ago

Help people interested in this repository understand your project by adding a README.

https://github.com/chainlight-io/web3kaist-hands-on

Hands on exercise - Create your own testbed

nomonster [hands-on-test-02 ' Private ® Unwatcl

ted from chainlight-io/web3kaist-hands-on

sode () Issues 19 Pullrequests (») Actions [Projects () Security |~ Insights 3 Settings

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~ <> Code ~

g Local Codespaces
@ junomonster Initial commit

) .) Codespaces +
M .github/workflows Initial commit Your workspaces in the cloud
M lib/forge-std Initial commit
M script Initial commit No codespaces
M src Initial commit You don't have any codespaces with this
repository checked out
M test Initial commit
. .\ . Create codespace on main
(9 .gitignore Initial commit
[foundry.toml Initial commit

Learn more about codespaces...

Add a README with an overview of your project. Codespace usage for this repository is paid for by junomonster

Hands on exercise - Create your own testbed

EXPLORER

v HANDS-ON-TEST-02 [CODESPACES]
> .github
> lib
> script
> src
> test
@ .gitignore

£ foundry.toml COd e Ed ito r

File Explorer (Tree)

Show All Commands ¢ % P
GotoFile 2 P
Find in Files © ¥ F
Start Debugging F5

Toggle Terminal ~

PROBLEMS ~ OUTPUT DEBUG CONSOLE ~ TERMINAL ~ PORTS COMMENTS Gloash A 4+~ @M @ - ~ X

@junomonster -+ /workspaces/hands-on-test-02 (main) $ I

Terminal

> OUTLINE

<

®0A0

3° main @Wo

X Codespaces Layout: U.S. & L

Hands on exercise - Create your own testbed

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS

Download Installer

@ @junomonster -» /workspaces/hands-on-test-02 (main) $ curl -L https://foundry.paradigm.xyz | bash

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 ——i——l—— ——l—— e = 0

100 1887 100 1887 0 0 5770 0 —i—i—— —i—i— ——i——i—— 5770

Installing foundryup...

100.0%

Detected your preferred shell is bash and added foundryup to PATH. Run 'source /home/codespace/.bashrc' or start a new terminal session to use foundryup.
Then, simply run 'foundryup' to install Foundry.
@junomonster » /workspaces/hands-on-test-02 (main) $ Load InSta”er

® @junomonster -» /workspaces/hands-on-test-02 (main) $. ~/.bashrc
@junomonster -» /workspaces/hands-on-test-02 (main) $ foundryup

Execute Installer

« X0X . X0X 2 X0X 2 XOX 2 XOX . XOX . XOX . XOX . XOX . XOX . XOX . XOXT

L T O L0 Portable and modular toolkit
Eij [:] H:H Hﬂﬂ IH] T}} LHJ for Ethereum Application Development
lL— = written in Rust.

« X0X. XOX 2 X0X . XOX 2 XO0X 2 X0X 2 XOX 2 X0X « XOX 2 XOX 2« XOX 2 XOX 2 X0X . XOX 2 XO0X . XOX . XOX . X0X

Repo : https://github.com/foundry-rs/
Book ! https://book.getfoundry.sh/
Chat : https://t.me/foundry_rs/
Support : https://t.me/foundry_support/

Contribute : https://github.com/orgs/foundry-rs/projects/2/
« X0X. XOX 2 X0X .« XOX 2 XOX 2« X0X 2 XOX 2 XOX « XOX 2 XOX 2« XOX 2 XOX 2 X0X . XOX 2 X0X . XOX . XO0X . X0X

foundryup: installing foundry (version nightly, tag nightly-388c3c@a528cdee61498372d52e605f993674570)
foundryup: downloading latest forge, cast, anvil, and chisel

Hands on exercise - Create your own testbed

“*Lecture goal: Pass the three test cases below

® @junomonster » /workspaces/hands-on-test-02 (main) $ forge test -v
[#] Compiling...
No files changed, compilation skipped

Running 3 tests for test/SafeVaultExploit.t.sol:SafeVaultTest

[FAIL. Reason: Assertion failed.] testIntegerOverUnderflow() (gas: 40188)
[FAIL. Reason: Assertion failed.] testReentrancySuccessEasy() (gas: 46061)
[FAIL. Reason: Assertion failed.] testReentrancySuccessHard() (gas: 46026)
Test result: FAILED. @ passed; 3 failed; finished in 10.20ms

Failing tests:

Encountered 3 failing tests in test/SafeVaultExploit.t.sol:SafeVaultTest
[FAIL. Reason: Assertion failed.] testIntegerOverUnderflow() (gas: 40188)
[FAIL. Reason: Assertion failed.] testReentrancySuccessEasy() (gas: 46061)
[FAIL. Reason: Assertion failed.] testReentrancySuccessHard() (gas: 46026)

Encountered a total of 3 failing tests, 0 tests succeeded
@junomonster » /workspaces/hands-on-test-02 (main) $ [

Hands on exercise - Code with me (Live Coding)

“*The final answers are available on the main repo’s tags:

“*https://github.com/chainlight-io/web3kaist-hands-
on/tree/ReentrancyEasyAnswer

“*https://github.com/chainlight-io/web3kaist-hands-
on/tree/ReentrancyHardAnswer

“*https://github.com/chainlight-io/web3kaist-hands-
on/tree/IntegerOverUnderflowAttackHandlerAnswer

https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyEasyAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyEasyAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyHardAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyHardAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/IntegerOverUnderflowAttackHandlerAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/IntegerOverUnderflowAttackHandlerAnswer

Future-proof your Security

Preparing for Safe Web3 Ecosystem

< Theori

The way to more secure Web3 ecosystem

Secure Coding Test Driven Security Audits Bug Bounty
Development

If anything changes, do the above steps again!

Wrap Up e

Cyber / Web3 Security P,

% Introduce ability to implement any application logics in a decentralized environment

< Immutability, transparency, distributed, and decentralized are exciting features, but security is important
% Itis a relatively new field and expected to mature over the next few years

% Smart contracts are still human-implemented programs and are not immune to mistakes

“ However, Web3 security is not just about smart contract security

< Requires not only traditional security skills, but also blockchain-specific and financial engineering
knowledge

ot

Thank You

Web3 Security
Adventure to Safer Web3 World

Brian Pak, CEO, Theori

brian@theori.io

Juno Im, Lead, ChainLight

juno@theori.io

< Theori

