
Building Dapp: The Process

Jason Han, Ph.D
Adjunct Professor of KAIST School of Computing

Founder of Ground X & Klaytn

web3classdao@gmail.com

http://web3classdao.xyz/kaist/

Lecture 9 (2023-04-05)

Building Web3 & Blockchain Applications
(CS492 Special Topics in Computer Science)
Spring 2023

Today’s Lecture 9 & 10 Overview

• Lecture Objective

- Understanding the entire process of building Dapp

- Building the ability to develop and deploy Dapp samples

- Learning various dev tools

• Lecture will cover

- Dapp development process

- Phased contract deployment

- Remix, truffle & Ganache, hardhat

- Ethereum JavaScript library: ethers.js

- Dapp samples: online voting, token

Today's lecture contains a lot of content.

Use it as a resource for self-study later.

Today’s lecture is geared toward beginners.

The goal is to let them try out Dapp samples.

I’m not a seasoned Dapp developer.

Don’t hesitate to comment if there are any errors.

Feel free to answer questions if you know.

Note before we get started

• Blockchain in Action (by Bina Ramamurthy) (Online voting example, outdated)

• Hardhat Tutorial (Token example)

• Web3 developer guide and overview from Alchemy

• Web3 tutorial from Alchemy

• ethers.js official documentation

• web3.js official documentation

• solidity official documentation

• MetaMask developer documentation

• OpenZeppelin documentation

• Ethereum development tutorials compiled by Ethereum Founation

• Ultimate Web3, Full Stack Solidity, and Smart Contract Course by Patrick Collins

References for the lecture

https://www.amazon.com/Blockchain-Action-Bina-Ramamurthy/dp/1617296333/
https://hardhat.org/tutorial
https://www.alchemy.com/overviews
https://docs.alchemy.com/docs
https://docs.ethers.org/v5/
https://web3js.readthedocs.io/en/v1.8.2/
https://docs.soliditylang.org/en/v0.8.19/index.html
https://docs.metamask.io/guide/
https://docs.openzeppelin.com/learn/
https://ethereum.org/en/developers/tutorials/
https://github.com/smartcontractkit/full-blockchain-solidity-course-js

A simple Ballot Dapp

It’s simple, and easy to understand

Good for walking through the entire process of Dapp dev

Example from a book of ‘Blockchain in Action’

with some modification

Clone the code here!
git clone https://github.com/web3classdao/ballot-truffle.git

Solution
Transparent and tamper-proof online voting

can be implemented on the blockchain.

Use Case: Online Voting

Problem
Online voting is convenient,

but it's also highly susceptible to manipulation.

Problems with traditional online voting
1) Manipulation of voting authorities (e.g., Produce 101)

2) Distrust of voting results (e.g., Political elections)

3) Pressure on voting authorities (governance issue)

Why Blockchain?

Online voting with smart contracts
- No post-deployment logic changes

- No manipulation of voting data

→ Increase trust in online voting

even if you don't trust the voting authority

※ Not decentralized online voting, but using blockchain as a foundation layer to improve trust

Implementing online voting in the traditional way?

Mobile

Web/App

(UI)

Server

(Voting Logic)

Database

Cloud (AWS, etc)

Admin

Dashboard

Data

Manipu

lation

Process

Manipu

lation

Implementing online voting based on blockchain?

Mobile

Web/App

(UI)

Server

(Voting Logic)

Database

Cloud (AWS, etc)

Admin

Dashboard

Smart

Contract

Onchain

Data
Blockchain

Block

Explorer

Wallet Sign voting tx

Verifiable

Unmanipulable

Separating onchain and offchain data

Offchain data
- Voter profile
- Proposal data

Onchain data
- Voting data
(address, weight, voting etc)
- Voting result

Mobile

Web/App

(UI)

Server

(Voting Logic)

Database

Cloud (AWS, etc)

Smart

Contract

Onchain

Data
Block

Explorer

Wallet Sign voting tx

Verifiable

Let's take a look at

the entire process of

developing an online voting Dapp
as an example.

Dapp Development Process

1. Design

2. Develop smart contracts with Remix

3. Deploy & test smart contracts (Local)

4. Develop a web app

5. Deploy & test all (Local)

6. Deploy & test all (Testnet)

7. Deploy & test all (Mainnet)

Web

UI
(HTML,

CSS, JS)

Web App w/

web3.js

(JavaScript)

Web Server (Local)

Smart

Contract

Onchain

Data

Phased deployment & testing

Block

Explorer

(Etherscan)

Wallet

(Metamask)

Dapp Development Environment
based on truffle & web3.js

Dev

(Remix)

Local

(Ganache)

Testnet

(Sepolia)

Mainnet

(Ethereum)

Contract

Deploy & Test

Node.js

Express

Contract

Dev/test

VSCode
(Editor)

Truffle

Contract &

Web App Dev

Ethereum

Web

Browser

User

Toolsets that we will use

1. Package manager: npm

2. Web server for the web app: node.js & Express

3. Smart contract IDE: truffle & web3.js

4. Web browser & wallet: Chrome & Metamask

5. Local testnet: Ganache

6. Public testnet: Sepolia

7. Code Editor: VSCode

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible"

content="IE=edge">
<meta name="viewport"

content="width=device-width, initial-scale=1">
<title>Pick your Favorite</title>

<!-- Bootstrap -->
<link href="css/bootstrap.min.css"

rel="stylesheet">
</head>
<body>
<div class="container">
<div class="row">
<div class="col-xs-12 col-sm-8 col-sm-

push-2">
<h1 class="text-center">Pick your

Favourite</h1>
<hr/>

</div>
</div>

…

What we develop in this lecture

pragma solidity >=0.7.0 <0.9.0;

/// @title Online Voting

contract Ballot {

struct Voter {

uint weight;

bool voted;

uint vote;

}

struct Proposal {

uint voteCount;

}

address chairperson;

mapping(address => Voter) voters;

Proposal[] proposals;

enum Phase {Init, Regs, Vote, Done}

Phase public currentPhase = Phase.Init;

…

JSON-RPC

Smart contract
(Ballot.sol)

Web App
(app.js)

Web UI
(index.html)

App = {
web3Provider: null,
contracts: {},
names: new Array(),
url: 'http://127.0.0.1:7545',
chairPerson:null,
currentAccount:null,
init: function() {
$.getJSON('../proposals.json',

function(data) {
var proposalsRow = $('#proposalsRow');
var proposalTemplate =

$('#proposalTemplate');

for (i = 0; i < data.length; i ++) {
proposalTemplate.find('.panel-

title').text(data[i].name);
proposalTemplate.find('img').attr('src

', data[i].picture);
proposalTemplate.find('.btn-

vote').attr('data-id', data[i].id);

proposalsRow.append(proposalTemplate.h
tml());

App.names.push(data[i].name);

…

1. Design

Problem Statement: Defining Problem

Online ballot application

• People vote to choose a proposal from a set of proposals

• A chairperson registers the people who can vote

• Only registered voters can vote (only once) on a proposal of their choice

• The chairperson’s vote is weighted twice (x2) as heavily as regular people’s votes

• The ballot process goes through four phases (Init, Regs, Vote, Done)

• The respective operations(Initialize, register, vote, count votes) can be

performed only in the corresponding phase

Analyzing Problem Statement

• Roles → Use case diagram

- voter

- chairperson

- anybody

• Rules (Constraints) → Modifier

- Only chairperson can register voters

- Only chairperson can change voting phase

- Only registered voters can vote

- The respective operations can be performed

only in the corresponding phase

• Assets → Data

- voters

- chairperson

- proposal

• States → FSM diagram

- Init, Regs, Vote, Done

• Events → Events

- Regs started

- Vote started

- Vote done

Use Case Diagram
Identifying the users, assets and transactions

Finite State Machine (FSM) Diagram
Representing system dynamics such as state transitions within a smart contract

Init Regs DoneVote

T = 0 T+10
days

T+11
days

registration counting happens here

time-based transition
(but there are many other options to change phases)

Only a chairperson can change phases

Each phase can specify the allowed operations

Contract Diagram
Specifying the name,

data assets, functions, and rules
for execution of functions
and access to the data

Ballot

Struct Voter { }

Struct Proposal { }

address chairperson;

mapping(address => Voter) voters;

Proposals[] proposals;

enum Phase {Init, Regs, Vote, Done}

Phase public currentPhase = Phase.Init;

event VoteInit();

event RegsStarted();

event VoteStarted();

event VoteDone(uint winningProposal);

modifier onlyChair() { }

modifier validVoter() { }

modifier validPhase(Phase reqPhase) { }

constructor (uint numProposals) { }

function advancePhase() public onlyChair { }

function register(address voter) public validPhase(Phase.Regs) onlyChair { }

function vote(uint toProposal) public validPhase(Phase.Vote) validVoter { }

function reqWinner() public validPhase(Phase.Done) view returns (uint

winningProposal) { }

Data

Event

Modifier

Functions

2. Develop smart contract

with Remix

Remix: develop and test Solidity codes
Online smart contract development environment

with the simulated Ethereum network

https://remix.ethereum.org/

Programming Data Items
Identifying the users and data assets

https://docs.soliditylang.org/en/v0.8.17/types.html

Programming State Transitions
Implementing a function and events for state transitions

https://www.alchemy.com/overviews/solidity-events

Programming Modifiers
A modifier is a special type of Solidity function

that is used to modify the behavior of other functions
Check that a certain condition is met before allowing the function to execute

https://www.alchemy.com/overviews/solidity-modifier

Solidity Error Handling

Error handling in Solidity ensures atomicity as a property
When a smart contract call terminates with an error, all the state changes are reverted

Three special functions for error handling: require, assert, revert

require()
• act as a gate check modifier verifying inputs and conditions before execution

• ideal for logic flow gating and validating user inputs on functions

• if failed, the unused gas is returned to the caller and the state is reversed to the original state

revert()
• identical to require() without evaluating any condition

• useful for more complex logic flow gates (i.e., complicated if-then blocks)

• if called, the unused gas is returned and the state reverts to its original state

assert()
• used to check for code that should never be false

• play an important role in preventing impossible scenarios

• don’t return any unused gas and instead, will consume the gas supply

https://www.alchemy.com/overviews/solidity-require

Programming

Functions
msg.sender

= contractor deployer

= contract owner

msg.sender

the address that has called or

initiated a function(vote)

require()

check the condition and

inputs

• Positive tests: verify that the behavior works as expected given valid input

- Chairperson registers three voters

- Chairperson changes to Vote phase

- Chairperson votes on a specific proposal

- The remaining voters (addresses) also vote on a specific proposal

- Chairperson changes to Done phase

- Call the voting results at any address to verify that the results are correct

• Negative testing: check and validate to catch errors and revert functions

when given invalid input

- Non-chairperson address calls register (onlyChair())

- Attempt to vote in Regs phase (validPhase())

- Attempt to vote from an unregistered address (validVoter())

- Invalid proposal voting attempt (require())

Testing smart contract in Remix

Video-01

Compiling and testing contracts in Remix

3. Deploy & test

smart contract (Local)

Truffle: Dapp development framework
A world class development environment, testing framework and

asset pipeline for blockchains using the Ethereum Virtual Machine (EVM)

• Built-in smart contract compilation, linking, deployment and binary
management.

• Automated contract testing for rapid development.

• Scriptable, extensible deployment & migrations framework.
• Network management for deploying to any number of public &

private networks.
• Advanced debugging with breakpoints, variable analysis, and step

functionality.
• Use console.log in your smart contracts
• Interactive console for direct contract communication.
• External script runner that executes scripts within a Truffle environment.
• Package management with NPM, using the ERC190 standard.
• Configurable build pipeline with support for tight integration.

https://trufflesuite.com/truffle/

Ganache: local test chain of truffle suite
a personal Ethereum blockchain which you can use
to run tests, execute commands, and inspect state

while controlling how the chain operates

https://trufflesuite.com/ganache/

VSCode (Visual Studio Code)
a popular code editor

Useful extensions

https://code.visualstudio.com/

npm install –g truffle

truffle version

mkdir ballot

cd ballot

mkdir ballot-contract

cd ballot-contract

npm install

truffle init

1) install truffle

2) create folders for a project and contracts

3) create a template directory w/ the structure

ballot-contract

contracts

migrations

test

truffle-config.js

solidity contracts for a project

scripts for deploying contracts

scripts for testing contracts

configuration file

Generated by truffle init

1) Initialize a template directory for contracts

4) write contracts and put them into the contracts folder

* When you run ‘truffle init’, don’t overwrite existing files
? Overwrite contracts? No
migrations already exists in this directory...
? Overwrite migrations? No
test already exists in this directory...
? Overwrite test? No
truffle-config.js already exists in this directory...
? Overwrite truffle-config.js? No

cd contracts

truffle compile

5) compile contracts

6) write config files for deployment

6-1) modify truffle-config.js

6-2) write migrations/2_deploy_contracts.js

2) Compile and deploy contracts

truffle migrate --reset

8) deploy contracts

7) run Ganache

truffle-config.js

migrations/2_deploy_contracts.js

numProposals

contract name

Systematic testing for smart contracts
Truffle supports an automated testing framework with testing scripts

1) in Javascript (Mocha testing framework & Chai for assertions), 2) in Solidity

• beforeEach() - the preconditions for other tests, specifying the code that will be executed

before every test defined by it() and describe() test specifications. The beforeEach() function

initializes the contract and establishes the base condition for the execution of a test

command.

• it() - a standalone test of a function as an independent test or a unit test.

• describe() - This function is a composite test structure, and it specifies a group of
related it() tests. Inside the test functions (it, describe, and so on), you’ll also use a few other

declarations:

• async() - Allows for the asynchronous execution of functions, especially because

transactions on a blockchain takes variable run times

• await() - Waits for a callback from the function invoked using async() mode

• assert() - Specifies the condition to assert; typically, it helps match the actual result

of a statement execution with expected results. If the match fails, the assertion fails.

Initialize contracts

for every unit test

Testing Regs phase

Testing Vote phase

Initialize Vote phase

for every unit test(it())

within this describe()

ballotTest.js

3) Test contracts w/ truffle

truffle test

10) test contracts

9) write ballotTest.js and put it into the test folder

Test results

Video-02

Deploying and testing contracts with Truffle

4. Develop Web App

Sepolia

Testnet

Ethereum

Mainnet

Ganache

Local

Testnet

IDEs

Web
app

Mobile
app

Game
app

web3.js, ethers.js

web3.js, ethers.js

web3.js, ethers.js

WalletConnect

web3.js, ethers.js

Nethereum

How to call smart contracts in various app types

Our

Focus

Web

UI
(HTML,

CSS, JS)

Web App w/

web3.js

(JavaScript)

Web Server (Local)

Smart

Contract

Onchain

Data

Phased deployment & testing

Block

Explorer

(Etherscan)

Wallet

(Metamask)

Dapp Development Environment
based on truffle & web3.js

Dev

(Remix)

Local

(Ganache)

Testnet

(Sepolia)

Mainnet

(Ethereum)

Contract

Deploy & Test

Node.js

Express

Contract

Dev/test

VSCode
(Editor)

Truffle

Contract &

Web App Dev

Ethereum

Web

Browser

User

DONE

We will develop

this part

pragma solidity >=0.7.0 <0.9.0;

/// @title Online Voting

contract Ballot {

struct Voter {

uint weight;

bool voted;

uint vote;

}

struct Proposal {

uint voteCount;

}

address chairperson;

mapping(address => Voter) voters;

Proposal[] proposals;

enum Phase {Init, Regs, Vote, Done}

Phase public currentPhase = Phase.Init;

…

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible"

content="IE=edge">
<meta name="viewport"

content="width=device-width, initial-scale=1">
<title>Pick your Favorite</title>

<!-- Bootstrap -->
<link href="css/bootstrap.min.css"

rel="stylesheet">
</head>
<body>
<div class="container">
<div class="row">
<div class="col-xs-12 col-sm-8 col-sm-

push-2">
<h1 class="text-center">Pick your

Favourite</h1>
<hr/>

</div>
</div>

…

What we develop in this lecture

JSON-RPC

Smart contract
(Ballot.sol)

Web App
(app.js)

Web UI
(index.html)

App = {
web3Provider: null,
contracts: {},
names: new Array(),
url: 'http://127.0.0.1:7545',
chairPerson:null,
currentAccount:null,
init: function() {
$.getJSON('../proposals.json',

function(data) {
var proposalsRow = $('#proposalsRow');
var proposalTemplate =

$('#proposalTemplate');

for (i = 0; i < data.length; i ++) {
proposalTemplate.find('.panel-

title').text(data[i].name);
proposalTemplate.find('img').attr('src

', data[i].picture);
proposalTemplate.find('.btn-

vote').attr('data-id', data[i].id);

proposalsRow.append(proposalTemplate.h
tml());

App.names.push(data[i].name);

…

DONE

web3.js

Web UI (frontend) for Online Voting

register()

vote()

reqWinner()

advancePhase()

cd ballot-app

npm init // you don’t need to run this

1) create a template directory for a web app

2) modify package.json

3) write express-based page (index.js)

4) write web UI (index.html)

5) write web app (app.js)

npm install

npm start

6) install modules and start Node.js

package.json

index.js

Develop Web App

Web UI (index.html)

Web App

(app.js)

Box 1. init Ethereum provider

Box 2. create an instance of Ballot contract

Box 3. call the vote function

from a MetaMask account

5. Deploy & test all (Local)

Setting up test accounts in Metamask

1) add local network (Ganache) 2) import accounts to Metamask

Video-03

Deploying & testing integrations locally

6. Deploy & test all (Testnet)

Web

UI
(HTML,

CSS, JS)

Web App w/

web3.js

(JavaScript)

Web Server (Local)

Smart

Contract

Onchain

Data

Phased deployment & testing

Block

Explorer

(Etherscan)

Wallet

(Metamask)

Dapp Development Environment
based on truffle & web3.js

Dev

(Remix)

Local

(Ganache)

Testnet

(Sepolia)

Mainnet

(Ethereum)

Contract

Deploy & Test

Node.js

Express

Contract

Dev/test

VSCode
(Editor)

Truffle

Contract &

Web App Dev

Ethereum

Web

Browser

User

DONE

DONE

Ethereum Testnets

https://www.alchemy.com/list-of/testnets-on-ethereum

https://www.alchemy.com/overviews/goerli-vs-sepolia

https://ethereum.org/en/developers/docs/networks/

Our choice

• Mimic a Mainnet but exist on a separate ledger
• Help developers test their applications and smart contracts in a risk-free way

Deprecated

1. Add Sepolia to Metamask

1) add Sepolia testnet

If you want to add it manually,

• Network Name - Sepolia Test Netwok

• RPC URL - [get URL from RPC node proviers]

• Chain ID - 11155111

• Currency Symbol - SepoliaETH

• Block Explorer URL - https://sepolia.etherscan.io/

2) get free SepoloaETH for gas fee

Faucets

https://sepoliafaucet.com/

https://www.infura.io/faucet

2. Prepare an RPC node

RPC Node

DApp JSON-RPC

• Connect dapps to the blockchain through RPC

(Remote Procedure Call)

• A computer running blockchain client software

Options to access an RPC node
1. Use an RPC node provider

2. Use a public RPC node

3. Run your own RPC node

https://www.alchemy.com/overviews/rpc-node

https://www.allthatnode.com/

https://www.infura.io/

https://www.alchemy.com/

3. Deploy contracts to Sepolia

npm install @truffle/hdwallet-provider dotenv

1) install required packages

2) write .env file to ballot-contract folder

PRIVATE_KEY=your_private_key

ALCHEMY_API_KEY=your_alchemy_api_key

3) add Sepolia conf to truffle-config.js

truffle migrate --network sepolia

4) deploy contracts to Sepolia

Check the contract in Etherscan for Sepolia

https://sepolia.etherscan.io/

truffle-config.js

4. Run web app with contracts in Sepolia

1) modify app.js with an RPC node

npm start

2) run node.js
4) check the tx on Etherscan

3) vote in the web page

Video-04

Deploying & testing integrations

on Sepolia testnet

7. Deploy & test all (Mainnet)

It’s exactly the same as the testnet process,

except for the RPC node and accounts

Sepolia

Testnet

Ethereum

Mainnet

Sepolia account
SepoliaETH

Ethereum account
ETH

https://eth-sepolia.g.alchemy.com/v2/

YOUR_ALCHEMY_API_KEY

https://eth-mainnet.g.alchemy.com/v2/

YOUR_ALCHEMY_API_KEY

https://etherscan.io/

https://sepolia.etherscan.io/

Wrap-up

We Learned

The entire process of building Dapp with Online voting Dapp
1. Design

2. Develop smart contracts with Remix

3. Deploy & test smart contracts (Local)

4. Develop a web app

5. Deploy & test all (Local)

6. Deploy & test all (Testnet)

7. Deploy & test all (Mainnet)

Note.
Smart contract development should be a rigorous process,
because smart contracts are closely tied to financial assets,

and a small mistake may lead to big losses and disaster.

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63

