Blockchain Technology: Advanced

March 22, 2023

Min Suk Kang

Assistant Professor

School of Computing/Graduate School of
Information Security

KAIST

Research Lab @ KAIST

Two parts

4 N

* Part I: Blockchain Technology: Advanced (L1/L2, ZKP, Sharding, etc)
* by Min Suk Kang (SoC, KAIST)

* Part Il: How complicated it is to build a blockchain platform
* by Sangmin Seo (Director, Klaytn Foundation)

Recap: Blockchain 101

Blockchain 101 lecture was very hard to follow...
as | have zero background...
Can | survive?

Don’t worry!

You can develop Web3 apps without becoming a
blockchain guru.
You just need to understand some characteristics
of underlying blockchain systemes.

What is a blockchain?

Abstract answer: a blockchain provides
coordination between many parties,
when there is no single trusted party

if trusted party exists = no need for a blockchain

[financial systems: often no trusted party]

Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

* A practical public append-only data structure,
secured by replication and incentives

« A fixed supply asset (BTC). Digital payments, and more.

Blockchains: what is the new idea?

2009 2015

Bitcoin Ethereum

Several innovations:

* Blockchain computer: a fully programmable environment

—> public programs that manage digital and financial assets

 Composability: applications running on chain can call each other

Blockchains: what is the new idea?

2009 2015 2017 2022

| | s S

| | e —
Bitcoin Ethereum growth of

DeFi, NFTs, DAOs

Bitcoin as a state transition system

world state updated world state
UTXO, nout UTXO,
N UTXO, N UTXO, "
' Tx: UTXO, = UTXO, '

Bitcoin rules: Foitcoin ©: SX1—S

S: set of all possible world states, s, € S genesis state
I: set of all possible inputs

Ethereum as a state transition system

Much richer state transition functions

= one transition executes an entire program

Ethereum updated Ethereum
world state world state

input

TX

Running a program on a blockchain (DAPP)

program code

create a DAPP

compute layer (execution chain): The EVM
consensus layer (beacon chain)

Example Tx

world state (four accounts)

State State'
14c5f8ba: owned 14c5f8ba:
- 1024 eth - - 1014 eth
Transaction
bb75a980: contract From: bb75a980:
- 5202 eth 14c5f8ba
if 'contract.storage[tx.data(0]): To: If lcontract.storage(tx.data[0]]:
contract.storage[tx.data[0]] = tx.data[1] bb75a980 contract.storage[tx.data[0]] = tx.data[1]
. 0, 235235CCHARLIEDALICE ..
[0, 235235, 0, ALICE ... ——> | value: —> |t (CHARLIE
10 eth

892bf92f: contract Data: 892bf92f:
- 0 eth 2, -0 eth
send(tx.value / 3, contract.storage[0]) CHARLIE send(tx.value / 3, contract.storage[0])

end(tx.value / 3, contract.storage(1))
22:3::::2:3: ,{ g Egm:g::g:zg:{;}; Sig: :end(tx.value /3, cont:act.:toragelﬂ)

30452fdedb3d [ALICE, BOB, CHARLIE]

[ALICE, BOB, CHARLIE] 7959f2ceb8al
4096ad65: owned 4096ad65:
- 77 eth - 77 eth

updated world state

The Merge: when the existing PoW consensus is replaced by the Beacon Chain’s PoS.

Ether eum,S Upgrade P ath Graphic: @trent_vanepps, not “official,” subject to change

Oct 14 2020 Aug 42021 2022
Deposit Contract London & The Merge
deployed EIP-1559

"\ Proof of Work #f Proof of Stake

Ethereum State: transactions, apps, contracts, balances

Dec 1 2020 Q3 2021 2022 - 2023

Beacon Chain launches Altair Upgrade Data Sharding

Many desired properties found in blockchains

* Safety: all honest participants have the same data
* Persistence: once added, data can never be removed

* Liveness: honest participants can add new transactions
* dynamic availability
* Censorship resistance

Not there yet... though

What about

* Throughput: Lots of transactions per unit

time, and

e Latency: Short timeframe to confirm a
transaction

* Cost: Making transactions is too expensive

Can’t we simply increase #txs
per block?
(i.e., produce larger blocks?)

~

J

Cryptocurrencies Transaction Speeds Compared to Visa & Paypal

VISA —

ofripple —

' PayPal —

BitcoinC

litecoin —

Jash —

>

N4 TR

ethereum

Obitcoin —

24,000
1,500
193 1,000 Transactions
60 :
100 Transactions
56
20
Transactions
48
20 Company
Transactions
7 per second

"""
What is Sharding, and why it’s needed?

Sharding

In General:
“Method of splitting and storing a single dataset in multiple databases’

In Blockchain:
“Distributing the set of transactions to partitioned committees,
and process block in a parallel way”

-
A Secure Sharding Protocol For Open Blockchains

Goal: Scale transaction rates almost linearly with mining power

Sharding == BFT Protocol

X Open Environments
- rely on Pre-established identities, PKls

BFT Protocol

High

X Scale
- quadratic number of messages
O Fast
TPS - only for small-sized networks
=P Nakamoto Consensus
X Scale
- Constant TX rate (3~7 TPS)
Low
O Secure
of Nodes in the Network - PoW for Miners: sybil-resistant

Small Large

A Secure Sharding Protocol For Open Blockchains

Goal: Scale transaction rates almost linearly with mining power

Sharding

PoW + BFT

- Generate validator’s Identities - Reaching a parallel consensus by each
- Works on Permissionless Blockchains committee

- Assign & Form committees - Reaching a consensus for proposing

- Sybil-resistant final block

Our discussion is based on the following paper:
Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of ACM CCS. 2016.

Elastico Protocol in Each Epoch:
Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of ACM CCS. 2016.

ID,

@ Committee #i
/‘ Ik \ ' ID,
- @ Committee #j

Identity Establishment & Committee Formation Overlay Setup for Committees

— Committee #i = — Committee #j —
I I

PoW

— Committee #i BET @

@ @ m) Shard #i
— Committee #j BET - - @

@ &= [P
Block

Intra-committee Consensus Final Consensus Broadcast

Elastico (1) : Identity Setup and Committee Formation

N Processors
K Committees
C Members per Committees

ID,
E Committee #i
@ Commlttee Hj

Identity Establishment & Committee Formation

ID = H(EpochRandomness | |IP| | Public Key| |[Nonce) < 2Y~P

2

00000010....101

* y : bit length of Hash Output
D: Difficulty

Elastico (1) : Identity Setup and Committee Formation

N Processors
K Committees
C Members per Committees

ID,
Committee #i

& - ID,
Committee #j

Identity Establishment & Committee Formation

Ex) s=1

Goals for assigning committees:

v’ Fairly distribute the nodes

v' Guarantee at most 1/3 adversary
nodes per committee

=> Use last s bits of ID (2° = K)

00000010....101
00000010....010
00000011....111
00000011....100

— Committee #1

00000010....010
00000011....100
— Committee #2
00000010....101
00000011....111

Elastico (2) : Overlay Setup for committees

N Processors
K Committees

) — Committee #i = — Committee #j —
C Members per Committees

Overlay Setup for Committees

~ ~

.0 .1

& &

Naive Solution?

Elastico (2) : Overlay Setup for committees

N Processors
K Committees
C Members per Committees

— Committee #i = — Committee #j —
I |

Overlay Setup for Committees

Naive Solution:
v’ Broadcast its identity to everyone

=> quadratic messages.. O(N?)

.0

| b=

s

Elastico (2) : Overlay Setup for committees

N Processors
K Committees . Committee #i —— — Committee # —

C Members per Committees I |

Overlay Setup for Committees

Better Solution:

v Use Directory Committees

v’ First C identities become Directory
Committees *Directory committees broadcast its identity to

v' Latter nodes send IDs to Directories all Directory committee members.

v' Directories send committee list
once each has = C members

"

Elastico (3) : Intra-committee Consensus

N Proces-sors — Committee #i = BFT
K Committees

C Members per Committees @ ® » Shard #i

— Committee #j = BET

® @ » Shard #j

Intra-committee Consensus

— Committee #1
Ex) s=1 ID TXID
TXID ...10 00...
All committees propose disjoint shards: 10101010 101 00 » 01...
v' Each committee works on a separate 1010 meue — 2
transactions based on their ID 00100110....010
01010011....111 — Committee #2
= Use first s bits of TXID -
10000011....100 ID TXID
...01 10...
.11 » 10...

Elastico (3) : Intra-committee Consensus

N Processors
K Committees
C Members per Committees

Proposer!

Committee #i

@S

=

— Committee #i — BFT
@ @ =) Shard #i
- C ittee #j ——
ommitiee #) BFT
@ @ =) Shard #
Intra-committee Consensus
pre-prepare prepare commit

Proposer
Validator
Comfm|1ttee Validator

3f+ @)

W
y YO
S

[©]

Validator 3 N\ 4

Run BFT Protocols

a | 01i..
C)

Agree on set of TXs (shard)

Elastico (4) : Final Consensus Broadcast

N Processors
K Committees
C Members per Committees

Data Block #1 (Header)

Data Block #2 (Header)

Data Block #K (Header)

Q
- -
Fina S

Final Consensus Broadcast

>c/2+1 sign

Proposer!
Final Committee BFT

@S =

Ordered Set Union
of Valid headers

S)
001..
010..

011..
Q y

Agree on set of Valid Headers

Of Data Blocks

Elastico (4) : Final Consensus Broadcast

Consensus Consensus Consensus
block i-1 block i block i+1
i th epoch
Data block 1
Data block 2

Each Epoch ends when:
v' Once the consensus block i is shared by Data block 3
final committee to all members in the

network, it is added to the blockchain.
v’ Each step process repeats in the next
epoch i+1.
v’ Broadcast S along with consensus block.

Elastico (4) : Final Consensus Broadcast

Consensus Consensus Consensus
block i-1 block i block i+1
i th epoch Reveal Ri i+1 th epoch
Data block 1 S
(Q)
Data block 2 MR, | O11..
In the next epoch: HR) | 100 «
v' Once the consensus block i is shared by Data block 3 H(RZ) 110"
3 .o
final committee to all members in the e) New node who wants to join

network, it is added to the blockchain.
v’ Each step process repeats in the next
epoch i+1.
v’ Broadcast S along with consensus block.

EpochRandomness = H(R,;) @ H(R,) @ H(R.) ® ... ® H(R))
XOR ¢/2 +1 H(R;)s

e
Results

100 Members per Committees

W Commttee Formation time W Consensus Time

== Blocks «#-Final Scalability

T;olgf () No. of Bllsock
800 - - 16
700 - - 14
600 - - 12
500 - - 10
400 - -8
300 - -6
200 - -4
100 - -2

0 - -0

100 200 400 800 1600
Network size (number of nodes)

Limitations of Sharding

* Cross-shard consensus
* Reduced composability
* New security risks

Scaling blockchains

* Sharding: parallelize blockchain network

* Payment channel: try not to touch blockchain (except when
necessary)

* Rollups: post only summary of tx/contract executions to
blockchain

Payment Channels: Initiating

o o

® Step 1: Make connections in LN. ®

Alice Bob
X BTC Y BTC

Layer 1
Main-net. oy BTC

Alice Bob
®__© '
C—
Al Ak

Layer 2

Lightning Network.

Step 2: Open channel via Funding transaction.

> [A&B <

NERERY

TX on-chain.

Alice Bob

Payment Channels: Multi-hop payments (HTLC) *Hash Time Lock Contracts

Alice wants to send Carol 1 BTC via Bob:

o

HTLC: 1 BTC HTLC: 1 BTC
RevBabR&&leR ORTLC RevzabR 88 BrORTLC
Alice &8& 17:00 Bob Bob && 16:00

Carol

Generate
H Random Key R &&

Limitations of payment channels

* User assets should be locked up

* Mainly designed for payments but not for contracts

Scaling blockchains

* Sharding: parallelize blockchain network

* Payment channel: try not to touch blockchain (except when
necessary)

* Rollups: post only summary of tx/contract executions to
blockchain

(some slides from Dan Boneh)

Kalodner, Harry, et al. "Arbitrum: Scalable, private smart contracts." in Proceedings of USENIX Security, 2018.
35

Basic layer-1 blockchain

Can handle 15 Tx/sec ... A layer-1 blockchain

(e.g., Ethereum)

current world state
TXA ‘ 1

updated world state

@ TXg []
. updated world state

World state: balances, storage, etc.

Rollup idea 1: batch many Tx into one
A layer-1 blockchain

(e.g., Ethereum)

Rollup

@ coordinator current world state
(Rollup state Merkle root)
v
) / l(Tx list)

updated world state
(updated Rollup state root)

*e Rollup state:

Alice’s balance

Bob’s balance

Rollup idea 1: batch many Tx into one
A layer-1 blockchain

Key point: (e.g., Ethereum)

* Hundreds of transactions
on Rollup state are batched into

. . current world state
a single transaction on layer-1

(Rollup state Merkle root)
= 100x speed up in Tx/sec

(Tx list)

updated world state

Rollup state:
(updated Rollup state root)

Alice’s balance

Bob’s balance

Two potential problems of rollup

Problem 1: what if coordinator is dishonest?
* |t could steal funds from the Rollup contract
e |t could issue fake Tx on behalf of users

Problem 2: what if coordinator stops providing service?

* If Rollup state is lost, how can we initialize a new coordinator?

Handling dishonest coordinators ERERe ST EINT:

* |dea 1: Let multiple coordinators disagree and present a
proof of fraud

* If all the coordinators output the same contract execution =>
unanimous agreement => L1 chain processes immediately

* If no unanimous agreement => at least one coordinator challenges

* Through interactions between coordinators, a concise fraud proof is
sent to L1 chain => L1 checks one computation step

e Lier’s stake will be slashed

* Dispute resolution period: typically 7 days

Handling dishonest coordinator

* |dea 2: Let coordinators provide proof of validity

* Coordinator processes all tx and outputs succinct proof that
proves that a batch of hundreds of tx is valid

e L1 efficiently verifies the validity proof and accepts it

Verifying Rollup state updates

Succinct proof proves that a

batch of hundreds of Tx is valid

Layer 1 blockchain
(e.g. Ethereum)

Rollup
coordinator

updated SNARK

state proof of
root valid Tx

Tx list

What the SNARK proof proves

SNARK proof is short and fast to verify:
= Cheap to verify proof on the slow L1 chain (with EVM support)

Public statement: (old state root, new state root, Tx list)
Witness: (state of each touched account pre- and post- batch,
Merkle proofs for touched accounts, user sigs)
SNARK proof proves that:
(1) all user sigs on Tx are valid, (2) all Merkle proofs are valid,
(3) post-state is the result of applying Tx list to pre-state

The end result

Rollup contract on L1 ensures coordinator cannot cheat:
* all submitted Tx must have been properly signed by users

* all state updates are valid

= Rollup contract on L1 will accept any update with a valid proof

= Producing validity proof (zkSNARK proof) is expensive though

Two potential problems of rollug

Optimistic rollup or

Problem 1: what if coordinator is dishonest?

zk-rollup

* |t could steal funds from the Rollup contract
* It could issue fake Tx on behalf of users

Problem 2: what if coordinator stops providing service?

* If Rollup state is lost, how can we initialize a new coordinator?

Data availability
committee

What’s next?

* Remaining issues
* Mature rollup technologies?
* Censorship in rollups?
e L3?

-
Two parts

* Part I: Blockchain Technology: Advanced (L1/L2, ZKP, Sharding, etc)
* by Min Suk Kang (SoC, KAIST)

After the break...

4 N

* Part Il: How complicated it is to build a blockchain platform
* by Sangmin Seo (Director, Klaytn Foundation)

