
Min Suk Kang
Assistant Professor

School of Computing/Graduate
School of Information Security

Blockchain 101: Ethereum

Building Web3 & Blockchain Applications

(CS492 Special Topics in Computer Science)

Spring 2023

Lecture 4 (2023-03-15)

Agenda

• Digital currency
• Why is it hard?

• What properties should we achieve?

• Nakamoto consensus
• How Bitcoin solved it?

• Ethereum as the world computer
• Smart contracts

• Proof of stake

• What’s more? (next week)

2

Limitations of Bitcoin

Recall: UTXO contains (hash of) ScriptPK

• simple script: indicates conditions when UTXO can be spent

Limitations:

• Difficult to maintain state in multi-stage contracts

• Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.

• Desired policy: can only transfer 2BTC per day out of my wallet

Ethereum: enables a world of applications
A world of Ethereum Decentralized apps (DAPPs)

• New coins: ERC-20 standard interface

• DeFi: exchanges, lending, stablecoins, derivatives, etc.

• Insurance

• DAOs: decentralized organizations

• NFTs: Managing asset ownership (ERC-721 interface)

Bitcoin as a state transition system

UTXO1

UTXO2

⋮

world state

…
UTXO1

UTXO3

⋮

updated world state

…
input

Tx: UTXO2 ⇾ UTXO3

Fbitcoin : S × I ⇾ S

S: set of all possible world states, s0∈ S genesis state
I: set of all possible inputs

Bitcoin rules:

Ethereum as a state transition system

Much richer state transition functions

⇒ one transition executes an entire program

Ethereum
world state

…

updated Ethereum
world state

…
input

Tx

Running a program on a blockchain (DAPP)

consensus layer (beacon chain)

compute layer (execution chain): The EVM

state0

program code

… blockchain …

state1
Tx1 Tx2 state2

create a DAPP

…

The Ethereum system

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives
Tx fees for block

(along with other rewards)

• Ethereum consensus

Ethereum compute layer: the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) owned accounts: controlled by ECDSA signing key pair (pk,sk).

sk: signing key known only to account owner

(2) contracts: controlled by code.

code set at account creation time, does not change

Account state: persistent storage
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]

• Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:

≤ 2×|S|

|S| = # non-zero cells

State transitions: Tx and messages
Transactions: signed data by initiator

• To: 32-byte address of target (0 ⇾ create new account)

• From, [Signature]: initiator address and signature on Tx (if owned)

• Value: # Wei being sent with Tx

• Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee (later)

• if To = 0: create new contract code = (init, body)

• if To ≠ 0: data (what function to call & arguments)

• nonce: must match current nonce of sender (prevents Tx replay)

• chain_id: ensures Tx can only be submitted to the intended chain

State transitions: Tx and messages

Transaction types:

owned ⇾ owned: transfer ETH between users

owned ⇾ contract: call contract with ETH & data

Example (block #10993504)
From To msg.value Tx fee (ETH)

Messages: virtual Tx initiated by a contract

Same as Tx, but no signature (contract has no signing key)

contract ⇾ owned: contract sends funds to user

contract ⇾ contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx processed. Composability!

Tx from owned addr ⇾ contract ⇾ another contract

another contract ⇾ different owned

Example Tx

world state (four accounts) updated world state

An Ethereum Block
Validators collect Txs from users ⇒ proposer creates a block of n Tx

• To produce a block do:
• for i=1,…,n: execute state change of Txi sequentially

(can change state of >n
accounts)

• record updated world state in block

Other validators re-execute all Tx to verify block ⇒
sign block if valid ⇒ enough sigs, epoch is finalized.

The Ethereum blockchain: abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Amount of memory to run a node

ETH total blockchain size (archival): 12 TB (Oct. 2022)

≈1 TB

An example contract: NameCoin

contract nameCoin { // Solidity code (next lecture)

struct nameEntry {
address owner; // address of domain owner
bytes32 value; // IP address

}

// array of all registered domains
mapping (bytes32 => nameEntry) data;

An example contract: NameCoin
function nameNew(bytes32 name) {

// registration costs is 100 Wei

if (data[name] == 0 && msg.value >= 100) {
data[name].owner = msg.sender // record domain owner
emit Register(msg.sender, name) // log event

}}

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.

An example contract: NameCoin
function nameUpdate(

bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from domain owner,
// and update cost of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >= 10) {

data[name].value = newValue; // record new value

data[name].owner = newOwner; // record new owner
}}}

An example contract: NameCoin

function nameLookup(bytes32 name) {

return data[name];
}

} // end of contract

Used by other contracts

Humans do not need this
(use etherscan.io)

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

⇒ compile to EVM bytecode

(some projects use WASM or BPF bytecode)

⇒ validators use the EVM to execute contract bytecode
in response to a Tx

The EVM

Stack machine (like Bitcoin) but with JUMP

• max stack depth = 1024

• program aborts if stack size exceeded; block proposer keeps gas

• contract can create or call another contract

In addition: two types of zero initialized memory

• Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

• Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

• LOG0(data): write data to log
see https://www.evm.codes

Gas calculation
Why charge gas?

• Tx fees (gas) prevents submitting Tx that runs for many steps.

• During high load: block proposer chooses Tx from mempool
that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)

• Every Tx contains a gasPrice ``bid’’ (gas ⇾ Wei conversion price)

• Producer chooses Tx with highest gasPrice (max sum(gasPrice×gasLimit))

⟹ not an efficient auction mechanism (first price auction)

Gas prices spike during congestion
GasPrice in Gwei:

86 Gwei = 86×10-9 ETH

Average Tx fee in USD

Note: transactions are becoming more
complex

Gas usage is increasing ⇒ each Tx takes more instructions to execute

Agenda

• Digital currency
• Why is it hard?

• What properties should we achieve?

• Nakamoto consensus
• How Bitcoin solved it?

• Ethereum as the world computer
• Smart contracts

• Proof of stake

• What’s more? (next week)

28

29

From Bitcoin to Proof-of-Stake

Combining GHOST and Casper (2020)

1982 2008 2022

The Byzantine
Generals Problem

2015

…
Bitcoin PoW Ethereum PoS Ethereum

Open Participation
• Dynamic availability
• Sybil resistance
Block rewards (carrot)

PoS Ethereum:
Open Participation
• Dynamic availability
• Sybil resistance

Block rewards (carrot)
Finality and accountable safety
Slashing (stick)

The Byzantine Generals Problem (1982)

Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. (2015)

Time

A few words on Proof-of-Stake

In a Proof-of-Stake protocol, nodes
lock up (i.e., stake) their coins in the
protocol to become eligible to
participate in consensus.

The more coins staked by a node…
• Higher the probability that the node is

elected as a leader (recall Streamlet).
• Larger the weight of that node’s vote.

If the node is caught doing an adversarial
action (like voting for two conflicting blocks),
it can be punished by burning its locked coins
(stake)! This is called slashing.

Thus, in a Proof-of-Stake protocol,
nodes can be held accountable for
their actions (unlike in Bitcoin, where
nodes do not lock up coins).

A few words on Proof-of-Stake

Protocol violators!

Staked Coins

e

e+1

…

epochs

Need 6 votes for finality

Accountable Safety

In a protocol with resilience of n/3:

• The protocol is secure (safe & live) if there are less than n/3 adversarial nodes.

• Example: Streamlet under partial synchrony has resilience of n/3.

In a protocol with accountable safety resilience of n/3:

• The protocol is secure if there are less than n/3 adversarial nodes.

• If there is ever a safety violation, all observers of the protocol can provably
identify (i.e., catch) n/3 adversarial node as protocol violators.

• No honest node is ever identified (no false accusation).

• Examples: PBFT, Tendermint, HotStuff, VABA…

Casper the Friendly Finality Gadget. (2017)
BFT Protocol Forensics (2021)

Accountable Safety

Number of
adversary nodes (𝑓)

𝑛/3 2𝑛/3 1
Safety &
Liveness ☺

No Safety or
Liveness 

No Safety or
Liveness 

Safety &
Liveness ☺

• No liveness 
• If safety is violated, catch and punish adversarial

nodes ☺

Resilience
of n/3

Accountable safety is
a stronger notion
than just security.

Accountable
safety
resilience of
n/3

0

Another Property of PoS: Finality

• Most accountably safe protocol examples we have seen satisfy safety and
liveness under partial synchrony.
• This means these protocols preserve safety during periods of asynchrony

(before GST).

• We say that a protocol provides finality if it preserves safety during periods of
asynchrony.
• Example: Streamlet provides finality.

• Interestingly, in most protocol providing finality, transactions can be finalized
much faster than they can be confirmed in Bitcoin.
• No need to wait for k=6 blocks (1 hour)!

Holy Grail of Internet Scale Consensus

• We want Sybil resistance: Proof-of-Work or Proof-of-Stake…

• We want dynamic availability so that…

• Transactions continue to be confirmed and processed even when there
is low participation, e.g., due to a world-wide catastrophe.

• We want finality and accountable safety so that…

• Finality: There cannot be safety violations (double-spends) during
asynchrony.

• Accountable safety: Nodes can be held accountable for their actions.

• Let’s focus on having dynamic availability and finality for now…

Holy Grail of Internet Scale Consensus

Is there a SMR protocol that provides both dynamic availability and finality?

No!

Blockchain CAP Theorem

Blockchain CAP Theorem

“I didn’t hear from the other
replicas; they are probably

offline.”

Log learned by Alice: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Dynamic
AvailabilityClient: Alice

Resource Pools and the CAP Theorem (2020)

Replicas/miners Replicas/minersLog: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Correct log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

For contradiction, suppose our SMR protocol has both dynamic availability and finality.

Blockchain CAP Theorem

“I didn’t hear from the other
replicas; they are probably

offline.”

Log learned by Alice: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Client: Alice

“I didn’t hear from the other
replicas; they are probably
offline.”

Log learned by Bob: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Client: Bob

Safety violation!
No safety under asynchrony!

No finality!

Replicas/miners Replicas/minersLog: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Correct log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3
Correct log: 𝑡𝑥3𝑡𝑥2𝑡𝑥1

For contradiction, suppose our SMR protocol has both dynamic availability and finality.

Resolution: Nested Chains

Single chain: tx1, tx2, tx3, …

• Finality: Safe under asynchrony
• Dynamic availability: Live under

dynamic participation

Available chain

• Safe and live under synchrony and
dynamic participation.

Finalized chain

• Prefix of the available chain.
• Safe under asynchrony.
• Live once the network becomes

synchronous and if enough nodes are
online.

Client chooses better guarantee

Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma (2020)

Resolution: Nested Chains

Available chain Finalized chain

How to obtain the nested ledgers?

• The available chain is determined by a protocol, denoted by Π𝑎𝑣𝑎, that satisfies
dynamic availability (e.g., a protocol running Nakamoto Consensus).

• The finalized chain is determined by a checkpointing protocol, denoted by
Π𝑓𝑖𝑛, that satisfies security under partial synchrony.

• Examples: Casper FFG, Grandpa, Afgjort, Accountability Gadgets…

• The chain confirmed by Π𝑎𝑣𝑎 is the available chain.

• Π𝑓𝑖𝑛 occasionally checkpoints blocks within the available chain.

• Prefix of the last checkpoint constitutes the finalized chain.

Casper the Friendly Finality Gadget. (2017)
Afgjort: A Partially Synchronous Finality Layer for Blockchains (2020)
GRANDPA: a Byzantine Finality Gadget (2020)
The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets (2021)

Available and finalized chains Checkpointing Protocol

Propose blk “txs5”

C Votes “txs5”

B Votes “txs5”

Propose blk “txs6”

A Votes “txs6”

C Votes “txs6”

Dynamic
Availability

Finality: Thanks to votes,
checkpoints are safe even under

asynchrony.

A

B

C

D

How to obtain the nested chains?

D Votes “txs5”

D Votes “txs6”Always extend
the last
checkpoint!!

PoS Ethereum

Consists of

• An available chain, which is determined by the protocol LMD GHOST (Latest
Message Driven - Greedy Heaviest Observed Subtree).

• The available chain provides dynamic availability.

• A finalized chain, which is determined by a checkpointing protocol called
Casper FFG (Casper the Friendly Finality Gadget).

• The finalized chain provides finality: safety under asynchrony.

• Besides finality, the finalized chain of PoS Ethereum provides accountable
safety:

• When there is a safety violation on the finalized chain, all observers of
the protocol can provably identify f adversarial nodes as protocol
violators, and no honest node.

Is Ethereum the Endgame?

What about

• Throughput: Lots of transactions per unit time, and

• Latency: Short timeframe to confirm a transaction?

45

Agenda

• Digital currency
• Why is it hard?
• What properties should we achieve?

• Nakamoto consensus
• How Bitcoin solved it?

• Ethereum as the world computer
• Smart contracts
• Proof of stake

• What’s more? (next week)
• Blockchain Technology: Advanced (L1/L2, ZKP, Sharding, etc) by Min Suk Kang (SoC, KAIST)
• How complicated it is to build a blockchain platform by Sangmin Seo (Director, Klaytn

Foundation)

46

	슬라이드 1
	슬라이드 2: Agenda
	슬라이드 3: Limitations of Bitcoin
	슬라이드 4: Ethereum: enables a world of applications
	슬라이드 5: Bitcoin as a state transition system
	슬라이드 6: Ethereum as a state transition system
	슬라이드 7: Running a program on a blockchain (DAPP)
	슬라이드 8: The Ethereum system
	슬라이드 9: Ethereum compute layer: the EVM
	슬라이드 10: Account state: persistent storage
	슬라이드 11: State transitions: Tx and messages
	슬라이드 12: State transitions: Tx and messages
	슬라이드 13: Example (block #10993504)
	슬라이드 14: Messages: virtual Tx initiated by a contract
	슬라이드 15: Example Tx
	슬라이드 16: An Ethereum Block
	슬라이드 17: The Ethereum blockchain: abstractly
	슬라이드 18: Amount of memory to run a node
	슬라이드 19: An example contract: NameCoin
	슬라이드 20: An example contract: NameCoin
	슬라이드 21: An example contract: NameCoin
	슬라이드 22: An example contract: NameCoin
	슬라이드 23: EVM mechanics: execution environment
	슬라이드 24: The EVM
	슬라이드 25: Gas calculation
	슬라이드 26: Gas prices spike during congestion
	슬라이드 27: Note: transactions are becoming more complex
	슬라이드 28: Agenda
	슬라이드 29
	슬라이드 30: From Bitcoin to Proof-of-Stake
	슬라이드 31: A few words on Proof-of-Stake
	슬라이드 32: A few words on Proof-of-Stake
	슬라이드 33: Accountable Safety
	슬라이드 34: Accountable Safety
	슬라이드 35: Another Property of PoS: Finality
	슬라이드 36: Holy Grail of Internet Scale Consensus
	슬라이드 37: Holy Grail of Internet Scale Consensus
	슬라이드 38: Blockchain CAP Theorem
	슬라이드 39: Blockchain CAP Theorem
	슬라이드 40: Resolution: Nested Chains
	슬라이드 41: Resolution: Nested Chains
	슬라이드 42: How to obtain the nested ledgers?
	슬라이드 43: How to obtain the nested chains?
	슬라이드 44: PoS Ethereum
	슬라이드 45: Is Ethereum the Endgame?
	슬라이드 46: Agenda

