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Agenda

• Digital currency 
• Why is it hard?

• What properties should we achieve?

• Nakamoto consensus
• How Bitcoin solved it? 

• Ethereum as the world computer
• Smart contracts

• Proof of stake

• What’s more? (next week)

2



Limitations of Bitcoin

Recall:  UTXO contains (hash of) ScriptPK

• simple script: indicates conditions when UTXO can be spent

Limitations:

• Difficult to maintain state in multi-stage contracts

• Difficult to enforce global rules on assets

A simple example: rate limiting.    My wallet manages 100 UTXOs.  

• Desired policy:  can only transfer 2BTC per day out of my wallet



Ethereum:  enables a world of applications
A world of Ethereum Decentralized apps (DAPPs)

• New coins:    ERC-20 standard interface

• DeFi:   exchanges,  lending,  stablecoins,  derivatives, etc.

• Insurance

• DAOs:  decentralized organizations

• NFTs:  Managing asset ownership  (ERC-721 interface)



Bitcoin as a state transition system

UTXO1

UTXO2

⋮

world state

…
UTXO1

UTXO3

⋮

updated world state

…
input

Tx: UTXO2 ⇾ UTXO3

Fbitcoin :  S × I ⇾ S   

S:  set of all possible world states,       s0∈ S genesis state
I:   set of all possible inputs

Bitcoin rules:



Ethereum as a state transition system

Much richer state transition functions

⇒ one transition executes an entire program

Ethereum
world state

…

updated Ethereum 
world state

…
input

Tx



Running a program on a blockchain (DAPP)

consensus layer  (beacon chain)

compute layer (execution chain):  The EVM

state0

program code

… blockchain …

state1
Tx1 Tx2 state2

create a DAPP

…



The Ethereum system

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives
Tx fees for block

(along with other rewards)

• Ethereum consensus



Ethereum compute layer:  the EVM

World state:   set of accounts identified by 32-byte address.

Two types of accounts:

(1) owned accounts:  controlled by ECDSA signing key pair (pk,sk).

sk: signing key known only to account owner

(2) contracts:  controlled by code.

code set at account creation time,  does not change



Account state:  persistent storage
Every contract has an associated storage array S[]:

S[0],  S[1],  …  ,  S[2256-1]:    each cell holds 32 bytes,  init to 0.

Account storage root: Merkle Patricia Tree hash of S[]

• Cannot compute full Merkle tree hash:  2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:

≤ 2×|S|

|S| = # non-zero cells



State transitions:  Tx and messages
Transactions:  signed data by initiator

• To: 32-byte address of target  (0 ⇾ create new account)

• From,  [Signature]:   initiator address and signature on Tx (if owned)

• Value:  # Wei being sent with Tx

• Tx fees (EIP 1559):  gasLimit,  maxFee,  maxPriorityFee (later)

• if  To = 0:   create new contract   code = (init, body)

• if  To ≠ 0:   data (what function to call & arguments)

• nonce:  must match current nonce of sender (prevents Tx replay)

• chain_id:  ensures Tx can only be submitted to the intended chain



State transitions:  Tx and messages

Transaction types:

owned ⇾ owned:     transfer ETH between users

owned ⇾ contract:   call contract with ETH & data



Example  (block  #10993504)
From To msg.value Tx fee (ETH)



Messages: virtual Tx initiated by a contract

Same as Tx, but no signature   (contract has no signing key)

contract ⇾ owned:    contract sends funds to user

contract ⇾ contract:  one program calls another (and sends funds)

One Tx from user: can lead to many Tx processed.   Composability!

Tx from owned addr ⇾ contract ⇾ another contract

another contract ⇾ different owned



Example Tx

world state (four accounts) updated world state



An Ethereum Block
Validators collect Txs from users  ⇒ proposer creates a block of n  Tx

• To produce a block do:    
• for i=1,…,n:  execute state change of Txi sequentially

(can change state of >n 
accounts)

• record updated world state in block

Other validators re-execute all Tx to verify block   ⇒
sign block if valid   ⇒ enough sigs, epoch is finalized.



The Ethereum blockchain: abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…



Amount of memory to run a node

ETH total blockchain size (archival):   12 TB   (Oct. 2022)

≈1 TB



An example contract:    NameCoin

contract nameCoin { // Solidity code   (next lecture)

struct nameEntry {
address owner; // address of domain owner
bytes32 value; // IP address

}

// array of all registered domains
mapping (bytes32 => nameEntry)  data;



An example contract:    NameCoin
function nameNew(bytes32 name) {

// registration costs is 100 Wei

if (data[name] == 0   &&   msg.value >= 100) {
data[name].owner = msg.sender // record domain owner
emit Register(msg.sender, name)   // log event

}}

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.



An example contract:    NameCoin
function nameUpdate(

bytes32 name, bytes32 newValue, address newOwner) { 

// check if message is from domain owner, 
//                and update cost of 10 Wei is paid

if (data[name].owner == msg.sender &&   msg.value >= 10) {

data[name].value = newValue; // record new value

data[name].owner = newOwner; // record new owner
}}}



An example contract:    NameCoin

function nameLookup(bytes32 name) {

return data[name];
}

}  // end of contract

Used by other contracts

Humans do not need this
(use etherscan.io)



EVM mechanics:  execution environment

Write code in Solidity (or another front-end language)

⇒ compile to EVM bytecode

(some projects use WASM or BPF bytecode)

⇒ validators use the EVM to execute contract bytecode
in response to a Tx



The EVM

Stack machine (like Bitcoin) but with JUMP

• max stack depth = 1024    

• program aborts if stack size exceeded;  block proposer keeps gas

• contract can create or call another contract

In addition:  two types of zero initialized memory

• Persistent storage (on blockchain):   SLOAD,  SSTORE   (expensive)

• Volatile memory (for single Tx):   MLOAD, MSTORE      (cheap)

• LOG0(data):  write data to log
see https://www.evm.codes



Gas calculation
Why charge gas?

• Tx fees (gas) prevents submitting Tx that runs for many steps.

• During high load: block proposer chooses Tx from mempool
that maximize its income.

Old EVM:   (prior to EIP1559,  live on 8/2021)

• Every Tx contains a gasPrice ``bid’’   (gas ⇾ Wei  conversion price)

• Producer chooses Tx with highest gasPrice (max  sum(gasPrice×gasLimit))

⟹ not an efficient auction mechanism  (first price auction)



Gas prices spike during congestion
GasPrice in Gwei:    

86 Gwei = 86×10-9 ETH

Average Tx fee in USD



Note: transactions are becoming more 
complex

Gas usage is increasing   ⇒ each Tx takes more instructions to execute



Agenda

• Digital currency 
• Why is it hard?

• What properties should we achieve?

• Nakamoto consensus
• How Bitcoin solved it? 

• Ethereum as the world computer
• Smart contracts

• Proof of stake

• What’s more? (next week)
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From Bitcoin to Proof-of-Stake

Combining GHOST and Casper (2020)

1982 2008 2022

The Byzantine 
Generals Problem

2015

…
Bitcoin PoW Ethereum PoS Ethereum

Open Participation
• Dynamic availability
• Sybil resistance
Block rewards (carrot)

PoS Ethereum: 
Open Participation
• Dynamic availability
• Sybil resistance

Block rewards (carrot)
Finality and accountable safety
Slashing (stick)

The Byzantine Generals Problem (1982)

Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. (2015) 

Time



A few words on Proof-of-Stake

In a Proof-of-Stake protocol, nodes 
lock up (i.e., stake) their coins in the 
protocol to become eligible to 
participate in consensus.

The more coins staked by a node…
• Higher the probability that the node is 

elected as a leader (recall Streamlet). 
• Larger the weight of that node’s vote.

If the node is caught doing an adversarial 
action (like voting for two conflicting blocks), 
it can be punished by burning its locked coins 
(stake)! This is called slashing.

Thus, in a Proof-of-Stake protocol, 
nodes can be held accountable for 
their actions (unlike in Bitcoin, where 
nodes do not lock up coins).



A few words on Proof-of-Stake

Protocol violators!

Staked Coins

e

e+1

…

epochs

Need 6 votes for finality



Accountable Safety

In a protocol with resilience of n/3:

• The protocol is secure (safe & live) if there are less than n/3 adversarial nodes.

• Example: Streamlet under partial synchrony has resilience of n/3.

In a protocol with accountable safety resilience of n/3:

• The protocol is secure if there are less than n/3 adversarial nodes.

• If there is ever a safety violation, all observers of the protocol can provably
identify (i.e., catch) n/3 adversarial node as protocol violators.

• No honest node is ever identified (no false accusation).

• Examples: PBFT, Tendermint, HotStuff, VABA…

Casper the Friendly Finality Gadget. (2017)
BFT Protocol Forensics (2021)



Accountable Safety

Number of 
adversary nodes (𝑓)

𝑛/3 2𝑛/3 1
Safety & 
Liveness ☺

No Safety or 
Liveness 

No Safety or 
Liveness 

Safety & 
Liveness ☺

• No liveness 
• If safety is violated, catch and punish adversarial 

nodes ☺

Resilience 
of n/3

Accountable safety is 
a stronger notion 
than just security. 

Accountable 
safety 
resilience of 
n/3

0



Another Property of PoS: Finality

• Most accountably safe protocol examples we have seen satisfy safety and 
liveness under partial synchrony.
• This means these protocols preserve safety during periods of asynchrony 

(before GST).

• We say that a protocol provides finality if it preserves safety during periods of 
asynchrony.
• Example: Streamlet provides finality.

• Interestingly, in most protocol providing finality, transactions can be finalized 
much faster than they can be confirmed in Bitcoin.
• No need to wait for k=6 blocks (1 hour)!



Holy Grail of Internet Scale Consensus

• We want Sybil resistance: Proof-of-Work or Proof-of-Stake…

• We want dynamic availability so that…

• Transactions continue to be confirmed and processed even when there 
is low participation, e.g., due to a world-wide catastrophe.

• We want finality and accountable safety so that…

• Finality: There cannot be safety violations (double-spends) during 
asynchrony.

• Accountable safety: Nodes can be held accountable for their actions.

• Let’s focus on having dynamic availability and finality for now…



Holy Grail of Internet Scale Consensus

Is there a SMR protocol that provides both dynamic availability and finality?

No!

Blockchain CAP Theorem



Blockchain CAP Theorem

“I didn’t hear from the other 
replicas; they are probably 

offline.”

Log learned by Alice: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Dynamic 
AvailabilityClient: Alice

Resource Pools and the CAP Theorem (2020)

Replicas/miners Replicas/minersLog: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

Correct log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3

For contradiction, suppose our SMR protocol has both dynamic availability and finality.



Blockchain CAP Theorem

“I didn’t hear from the other 
replicas; they are probably 

offline.”

Log learned by Alice: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Client: Alice

“I didn’t hear from the other 
replicas; they are probably 
offline.”

Log learned by Bob: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Client: Bob

Safety violation!
No safety under asynchrony!

No finality!

Replicas/miners Replicas/minersLog: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Correct log: 𝑡𝑥1𝑡𝑥2𝑡𝑥3
Correct log: 𝑡𝑥3𝑡𝑥2𝑡𝑥1

For contradiction, suppose our SMR protocol has both dynamic availability and finality.



Resolution: Nested Chains

Single chain: tx1, tx2, tx3, …

• Finality: Safe under asynchrony
• Dynamic availability: Live under 

dynamic participation

Available chain

• Safe and live under synchrony and 
dynamic participation.

Finalized chain

• Prefix of the available chain.
• Safe under asynchrony.
• Live once the network becomes 

synchronous and if enough nodes are 
online.

Client chooses better guarantee

Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma (2020)



Resolution: Nested Chains

Available chain Finalized chain



How to obtain the nested ledgers?

• The available chain is determined by a protocol, denoted by Π𝑎𝑣𝑎, that satisfies 
dynamic availability (e.g., a protocol running Nakamoto Consensus).

• The finalized chain is determined by a checkpointing protocol, denoted by 
Π𝑓𝑖𝑛, that satisfies security under partial synchrony.

• Examples: Casper FFG, Grandpa, Afgjort, Accountability Gadgets…

• The chain confirmed by Π𝑎𝑣𝑎 is the available chain.

• Π𝑓𝑖𝑛 occasionally checkpoints blocks within the available chain. 

• Prefix of the last checkpoint constitutes the finalized chain.

Casper the Friendly Finality Gadget. (2017)
Afgjort: A Partially Synchronous Finality Layer for Blockchains (2020)
GRANDPA: a Byzantine Finality Gadget (2020)
The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets (2021)



Available and finalized chains Checkpointing Protocol

Propose blk “txs5”

C Votes “txs5”

B Votes “txs5”

Propose blk “txs6”

A  Votes “txs6”

C Votes “txs6”

Dynamic 
Availability

Finality: Thanks to votes, 
checkpoints are safe even under 

asynchrony.

A

B

C

D

How to obtain the nested chains?

D Votes “txs5”

D Votes “txs6”Always extend 
the last 
checkpoint!!



PoS Ethereum

Consists of

• An available chain, which is determined by the protocol LMD GHOST (Latest 
Message Driven - Greedy Heaviest Observed Subtree).

• The available chain provides dynamic availability.

• A finalized chain, which is determined by a checkpointing protocol called 
Casper FFG (Casper the Friendly Finality Gadget).

• The finalized chain provides finality: safety under asynchrony.

• Besides finality, the finalized chain of PoS Ethereum provides accountable 
safety: 

• When there is a safety violation on the finalized chain, all observers of 
the protocol can provably identify f adversarial nodes as protocol 
violators, and no honest node.



Is Ethereum the Endgame?

What about

• Throughput: Lots of transactions per unit time, and

• Latency: Short timeframe to confirm a transaction?

45



Agenda

• Digital currency 
• Why is it hard?
• What properties should we achieve?

• Nakamoto consensus
• How Bitcoin solved it? 

• Ethereum as the world computer
• Smart contracts
• Proof of stake

• What’s more? (next week)
• Blockchain Technology: Advanced (L1/L2, ZKP, Sharding, etc) by Min Suk Kang (SoC, KAIST)
• How complicated it is to build a blockchain platform by Sangmin Seo (Director, Klaytn

Foundation)
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