
Web3 Security
Adventure to Safer Web3 World

Brian Pak / Juno Im
Web3@KAIST

Introduction

Empowering Innovation with Security

70+ wins in international hacking competitions
Including 6-time wins on DEFCON CTF
Winners of Paradigm CTF & Numen CTF (Web3)

Multiple vulnerabilities reported
Various global vendors and open-source projects
Ethereum vulnerability bounty leaderboard

Brian Pak
박세준

Juno Im
임준오

Agenda

Cyber
Security

Blockchain
x

Security

Security
Threats in

Web3

Real World
Examples

Future-proof
Security

31 2

5 6

Solidity
Security

4

Cybersecurity
Security in Cyberspace

Cyberspace

Virtual environment with computer systems

Cyberspace

Globally connected world

Cyberspace

COVID-19 accelerated DX

Evolution of Cyberspace

The Origin
1982

First appeared in cyberpunk
fiction, authored by William
Gibson

Gibson described it as an
online computer network

The Internet
Early 90s

Initially developed in 1960s
by the US DoD for military
purpose

Later expanded into the
commercial networks and
enterprises market

Dot-com Era
Late 90s; Early 2000

Massive growth in Internet adoption with
lots of money (VCs) and start-ups

E-commerce, communications, finance, ads

“Bubble” pops.. Current
2023

Cloud infrastructure

Microservice Architecture

Blockchain (Web3) popularized

Evolution of Cyberspace
2.
6

4.
2

6.
8

9.
8

20
.1

38
.7

72 11
6

18
0

27
2 39
6 49
9 66
8

76
1 89
9 1,
00

4

1,
11

6

1,
28

8

1,
46

0

1,
65

5

1,
90

8

2,
13

0

2,
35

5

2,
53

4

2,
80

0

3,
00

4 3,
42

3

3,
67

9 3,
97

7 4,
33

5 4,
62

7 4,
96

2

5,
06

0

5,
15

8

0

1000

2000

3000

4000

5000

6000

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Number of Internet users in millions

https://datareportal.com/global-digital-overview

Current State of Cyberspace

Current State of Cyberspace

Rise of cybersecurity threats in
every digital technology

is a challenge

Threats in Industry

IT / Tech Game

Web3

• Web & Mobile applications
• Cloud infrastructure
• CI/CD pipeline (DevOps)

Automotive

• Embedded hardware
• Firmware
• Physical security

Finance

• Web & Mobile applications
• Financial information
• Security ”solutions”

• Cheats / Anti-cheat
• IP Theft
• Web applications

• Centralized Exchanges (CEX)
• Decentralized Finance (DeFi)
• Non-Fungible Tokens (NFTs)
• Blockchain / Smart contracts

Blockchain x Security
Building Trust and Integrity in Blockchain

Blockchain x Security

Blockchain provides some strong guarantees

Immutable

Transparent

Distributed /
Decentralized

Secure

Blockchain x Security

New paradigm, new frameworks appeared

Blockchain x Security

New attack surfaces and threat models arise

Blockchain x Security

One tiny mistake can cost a fortune
But, there are ways to make things more secure

Bug bounties Security audits

Blockchain x Security

Project teams may not be well-funded
(Even though they may have large TVL)

Security Threats in Web3
Potential Threats and Challenges

Security Threats in Web3

Smart
Contracts

Infrastructure
& Off-chain

Centralization
Risks

Blockchain
Network

Security Threats in Web3

Smart Contracts
v Reentrancy

v Insufficient ACL

v Integer overflow / underflow

v Financial engineering attacks
v Insecure governance model

v Logic bugs

The Brain

Security Threats in Web3

Blockchain Network
v Denial of Service

v Precompiled Smart Contracts bugs

v Remote Code Execution

v P2P Eclipse attack
v Consensus issues (Chain splits)

v Maximum (Miner) Extractable Value

Nodes

Security Threats in Web3

Infrastructure & Off-chain
v Front-end web vulnerabilities

v Key management

v Lack of user input validation

v Events and log parsing
v Phishing

v State-sponsored cyber attacks

Web2 / Legacy

Security Threats in Web3

Centralization Risks
v Backdoors

v Rug pull

v Scams

v Majority attacks
v Upgradeability

Dependency

Smart Contracts Security
Smart ≠ Secure

”Smart” Contracts

Smart Contracts
A digital contract executed via computerized transactions

Concept proposed by Nick Szabo in 1994

Plays a "brain" role and enables application development

Most blockchains support smart contracts (e.g. Ethereum, Aptos, Solana)

”Smart” Contracts

Smart Contracts
A digital contract executed via computerized transactions

Enforceability

Observability

Verifiability

Privacy

Ethereum Virtual Machine (EVM)

The World’s Computer
v Programmable, decentralized state-machine

v Turing-complete smart contracts can be
executed
v Decentralized computing platform!

v EVM Architecture
v Stack-based VM
v Gas as “fee”

Why Gas?

Ethereum blockchain uses fees as fuel for executing smart contracts
Gas usage is limited, and prices are adjusted according to market economics to ensure network stability

Solidity

Decentralized app (DApp) development language in EVM-based blockchain
v Similar syntax as JavaScript, Java, Go

v Basic programming structure
v Arithmetic operations, types, constants and variables, control statements, function calls,

memory, basic data structures, error handling, etc.
v Reserved keywords and global variables to access blockchain info

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.16;

contract TheoriRules {
function add(uint a, uint b) external pure returns(uint) {

return a+b;
}

}

0x608060405234801561001057600080fd5b506101b480610020
6000396000f3fe608060405234801561001057600080fd5b5060
04361061002b5760003560e01c8063771602f714610030575b60
0080fd5b61004a600480360381019061004591906100b1565b61
0060565b6040516100579190610100565b60405180910390f35b
6000818361006e919061014a565b905092915050565b600080fd
5b6000819050919050565b61008e8161007b565b811461009957
600080fd5b50565b6000813590506100ab81610085565b929150
50565b600080604083850312156100c8576100c7610076565b5b
60006100d68582860161009c565b92505060206100e785828601
61009c565b9150509250929050565b6100fa8161007b565b8252
5050565b600060208201905061011560008301846100f1565b92
915050565b7f4e487b710000000000000...

Compiled to Bytecode

Smart Contracts Security

vWe will be focusing on Solidity code
vMost of the smart contracts are deployed on EVM compatible chain and

written in Solidity
vSmart Contract Weaknesses

vSWC-101: Integer overflow / underflow
vSWC-107: Reentrancy
vSWC-136: Unencrypted Private Data On-Chain
vSWC-128: DoS With Block Gas Limit
vSWC-122: Lack of Proper Signature Verification
vSWC-113: DoS with Failed Call

Integer overflow / underflow

Integer overflow / underflow

Integer overflow / underflow - Example

Integer overflow / underflow - Example

Integer overflow / underflow - Remediation

vFrom solidity 0.8.0, compiler add safeguards on the entire of
arithmetic calculations ON Dec 16, 2020.

Reentrancy

vAny interaction from a contract (A) with another contract (B) and
any transfer of Ether hands over control to that contract (B).

vThis makes it possible for B to call back into A before this
interaction is completed.

vTo give an example, the following code contains a bug (it is just a
snippet and not a complete contract):

Reentrancy – Example

Reentrancy – Example

A"acker Contract
Vulnerable Contract

Reentrancy - Remediation

vChecks-Effects-Interactions pattern
vhttps://docs.soliditylang.org/en/v0.6.11/security-considerations.html

Check

Interaction

Effect

https://docs.soliditylang.org/en/v0.6.11/security-considerations.html

Reentrancy - Remediation

vNon-reentrant modifier (mutex)
vEnforce limits on call to the same function among the same call stack.

Adding lock here

DoS With Block Gas Limit

vUser pays “Gas” as a transaction fee.
vBlock has a limitation of maximum gas, Gas Limit.

DoS With Block Gas Limit

DoS With Block Gas Limit - Remediation

DoS With Block Gas Limit - Remediation

Real-world Incidents

Real World Case I: Phishing

Low technical difficulty, but highly effective attack #Pay2Hack

Real World Case I: Phishing

Low technical difficulty, but highly effective attack

People studied no one (even Metamask) asks for seed phrases

They started to ask you “sign” something. (= tx hash)

For more details:

https://blog.chainlight.io/si-vis-pacem-para-bellum-exploring-
metamask-phishing-4605425d80a7

#Pay2Hack

https://blog.chainlight.io/si-vis-pacem-para-bellum-exploring-metamask-phishing-4605425d80a7
https://blog.chainlight.io/si-vis-pacem-para-bellum-exploring-metamask-phishing-4605425d80a7

Real World Case II: Harvest Finance

💸 $33.8M of losses ($24M to attacker)

💥 Classic example of price oracle attack with a flash loan

🙀 The attacker successfully gained profit with 10 ETH
v Swap to increase price of USDC token

(USDT ⇒ USDC)

v Deposit USDC into Vault
v Swap to decrease price of USDC token

(USDC ⇒ USDT)

v Withdraw USDC from Vault
(price is lower, so we get more USDC)

v Repeat

Curve
yUSD pool

Swap 17M USDT to USDC

Flash borrow 18M USDT and
50M USDC

Deposit 50M USDC & Receive
52M pool tokens

Query USDC price

Increases price of USDC

Swap 17M USDC to USDT
Decreases price of USDC

Withdraw 50.8M USDC with
52M pool tokens

Repay flash loans
⇒ $500K profit

Query USDC price

Real World Case III: Nomad Bridge

💸 $190M of losses

💥 “Every-man-for-himself” as everyone copied the attack
(First crowd hacking..?)

🙀 Code upgrade added a bug
v Special cases were added for “legacy” messages
v Failed to handle special case of None (0x0)

🤯 By itself, not exploitable, except…
v During initialization, 0x0 was accidentally set as a trusted Merkle root
v On Ethereum, uninitialized storage defaults to 0x0
v All messages with an uninitialized root are now valid!

Real World Case IV: Ronin Network

💸 $624M of losses

💥 State-sponsored attack (North Korea); Broke “multisig”

🙀 4 validators were run by ONE company

v 5 validators must sign a message
v 9 total validators

🤯 Hack 1 company ⇒ Control 5 of 9 validators ⇒ Profit

🙆 Bridge contract used a 5 of 9 signature check

v 1 additional validator approved that company to sign on its behalf…🤦

Real World Case V: KLAYswap

Real World Case V: KLAYswap

💸 $2M of losses

💥 Infrastructure & Web2 compromise ⇒ Damage in Web3
(Web3 Smart Contract was SAFU 🤯)

🙀 BGP hijack resulting in front-end loading attacker’s code

🤔 KLAYswap used CloudFlare
v More difficult to hijack as CloudFlare is widely announced
v Instead, attacker targeted a library hosted on a third-party server

🙀 SSL/TLS bypass possible with and

Real World Case V: KLAYswap

v Hosted on Amazon AWS, but still vulnerable to BGP hijack
Celer Network hacked with BGP hijack 7 months later ☠

BGP hijacks are NOT going away.
Protocols must take precautions!

Real World Incidents – Hands on exercise

vTesting environment setup: GitHub Codespace + foundry-rs
vHands on exercise: Code with me

vReentrancy Bug Easy
vReentrancy Bug Hard
vInteger Over/Underflow

Real World Incidents – Hands on exercise

v”Foundry”: blazing fast, portable and modular toolkit for Ethereum
application development written in Rust 🦀
vFast & flexible compilation pipeline
vTests are written in Solidity
vFast fuzz testing
vFast remote RPC forking mode
vFlexible debug logging
vPortable (5-10MB) & easy to install
vFast CI

vTest like a pro (KR):
https://www.youtube.com/watch?v=C8V8mlxwgXI&t=1731s

https://www.youtube.com/watch?v=C8V8mlxwgXI&t=1731s

Hands on exercise – Create your own testbed

• https://github.com/chainlight-io/web3kaist-hands-on

https://github.com/chainlight-io/web3kaist-hands-on

Hands on exercise – Create your own testbed

Hands on exercise – Create your own testbed

File Explorer (Tree)

Terminal

Code Editor

Hands on exercise – Create your own testbed

Download Installer

Load Installer

Execute Installer

Hands on exercise – Create your own testbed

vLecture goal: Pass the three test cases below

Hands on exercise – Code with me (Live Coding)

vThe final answers are available on the main repo’s tags:
vhttps://github.com/chainlight-io/web3kaist-hands-

on/tree/ReentrancyEasyAnswer
vhttps://github.com/chainlight-io/web3kaist-hands-

on/tree/ReentrancyHardAnswer
vhttps://github.com/chainlight-io/web3kaist-hands-

on/tree/IntegerOverUnderflowAttackHandlerAnswer

https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyEasyAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyEasyAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyHardAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyHardAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/IntegerOverUnderflowAttackHandlerAnswer
https://github.com/chainlight-io/web3kaist-hands-on/tree/IntegerOverUnderflowAttackHandlerAnswer

Future-proof your Security
Preparing for Safe Web3 Ecosystem

The way to more secure Web3 ecosystem

Secure Coding Security Audits Bug Bounty

If anything changes, do the above steps again!

Test Driven
Development

Wrap Up
Cyber / Web3 Security

v Introduce ability to implement any application logics in a decentralized environment

v Immutability, transparency, distributed, and decentralized are exciting features, but security is important

v It is a relatively new field and expected to mature over the next few years

v Smart contracts are still human-implemented programs and are not immune to mistakes

v However, Web3 security is not just about smart contract security

v Requires not only traditional security skills, but also blockchain-specific and financial engineering
knowledge

Thank You
Web3 Security
Adventure to Safer Web3 World

Brian Pak, CEO, Theori
brian@theori.io

Juno Im, Lead, ChainLight
juno@theori.io

