Web3 Security

Adventure to Safer Web3 World

Brian Pak / Juno Im

Web3@KAIST

Introduction

Brian Pak 박세준 **70+ wins in international hacking competitions** Including 6-time wins on DEFCON CTF Winners of Paradigm CTF & Numen CTF (Web3)

Multiple vulnerabilities reported Various global vendors and open-source projects Ethereum vulnerability bounty leaderboard

Empowering Innovation with Security

Juno Im 임준오

Security in Cyberspace

Virtual environment with computer systems

Cyberspace

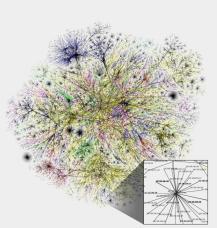
Globally connected world

Cyberspace

COVID-19 accelerated DX

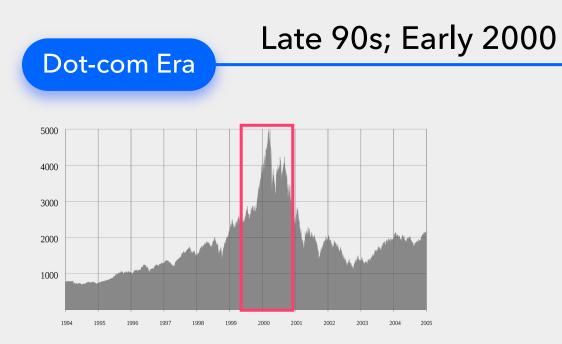
Evolution of Cyberspace

The Origin

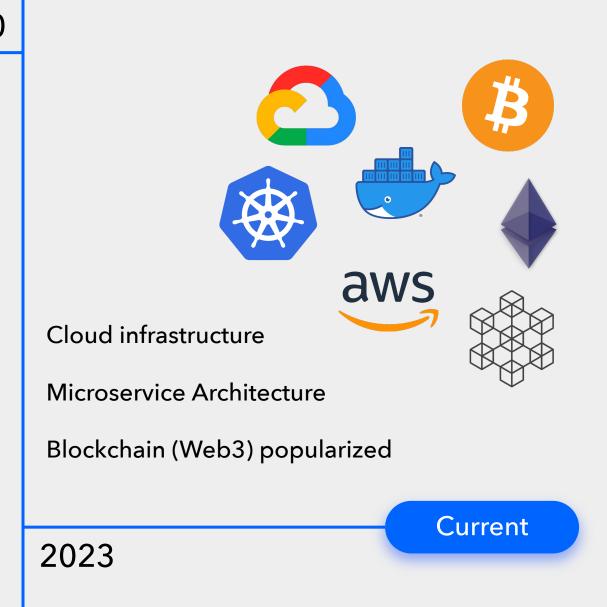

First appeared in cyberpunk fiction, authored by William Gibson

1982

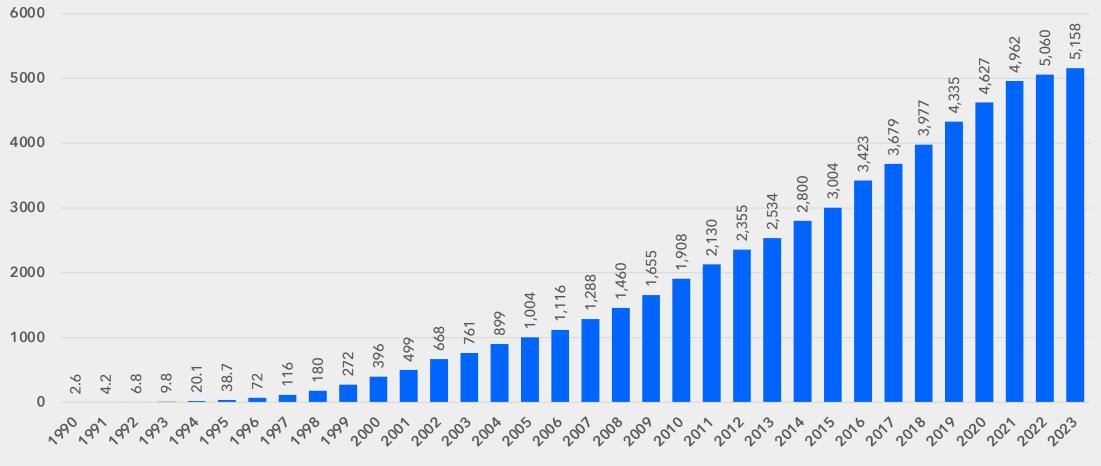
Gibson described it as an online computer network


Initially developed in 1960s by the US DoD for military purpose

Later expanded into the commercial networks and enterprises market


The Internet

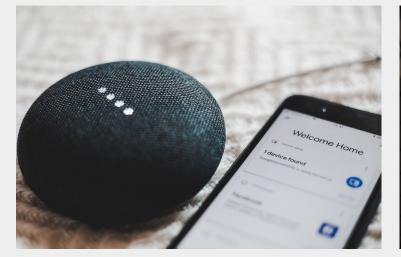
Early 90s

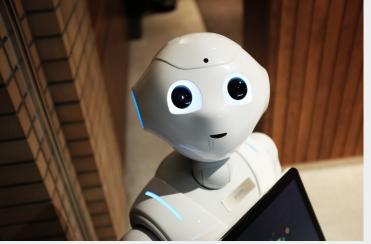


Massive growth in Internet adoption with lots of money (VCs) and start-ups

E-commerce, communications, finance, ads "Bubble" pops..

Evolution of Cyberspace


Number of Internet users in millions


Current State of Cyberspace

Current State of Cyberspace

Rise of cybersecurity threats in every digital technology is a challenge

Threats in Industry

IT / Tech

- Web & Mobile applications
- Cloud infrastructure
- CI/CD pipeline (DevOps)

Finance

- Web & Mobile applications
- Financial information
- Security "solutions"

Game

- Cheats / Anti-cheat
- IP Theft
- Web applications

Automotive

- Embedded hardware
- Firmware
- Physical security

Web3

- Centralized Exchanges (CEX)
- Decentralized Finance (DeFi)
- Non-Fungible Tokens (NFTs)
- Blockchain / Smart contracts

Building Trust and Integrity in Blockchain

Blockchain provides some **strong** guarantees

Distributed / Decentralized

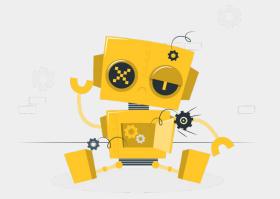
New paradigm, new frameworks appeared

New attack surfaces and threat models arise

One tiny mistake can cost a fortune

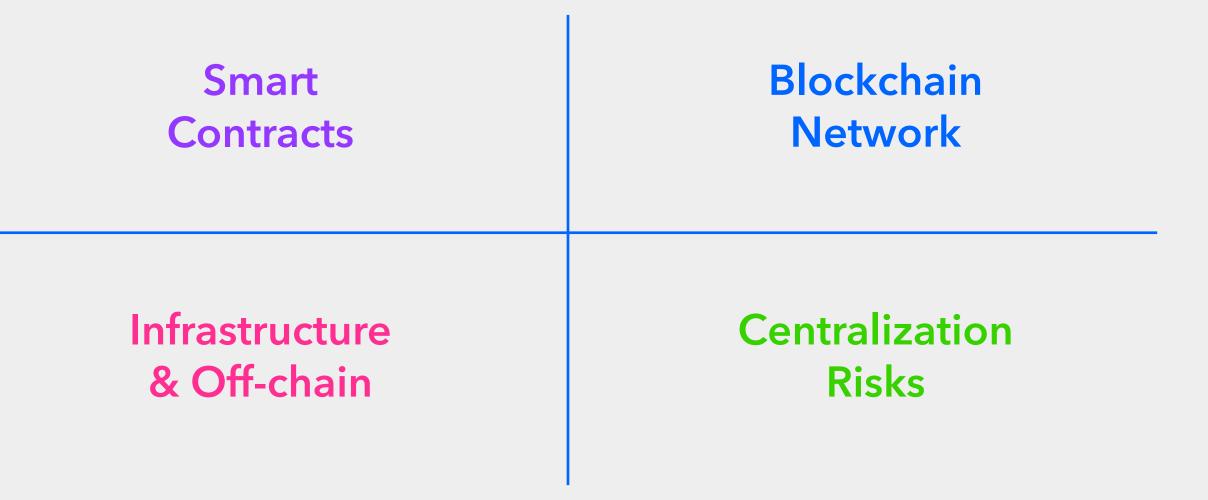
But, there are ways to make things more secure

Bug bounties

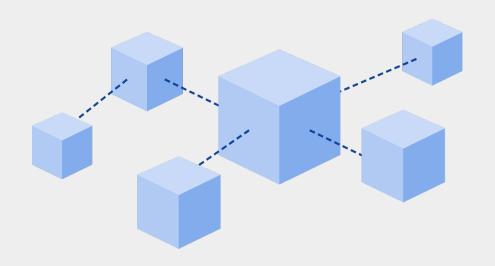


Security audits

Project teams may **not** be well-funded


(Even though they may have large TVL)

Potential Threats and Challenges



Smart Contracts

The Brain

- Reentrancy
- Insufficient ACL
- Integer overflow / underflow
- Financial engineering attacks
- Insecure governance model
- Logic bugs


Blockchain Network

Nodes

- Denial of Service
- Precompiled Smart Contracts bugs
- Remote Code Execution
- P2P Eclipse attack
- Consensus issues (Chain splits)
- Maximum (Miner) Extractable Value

Infrastructure & Off-chain Web2/Legacy

- Front-end web vulnerabilities
- Key management
- Lack of user input validation
- Events and log parsing
- Phishing
- State-sponsored cyber attacks

Centralization Risks Dependency

Backdoors

Rug pull

Scams

Majority attacks

Upgradeability

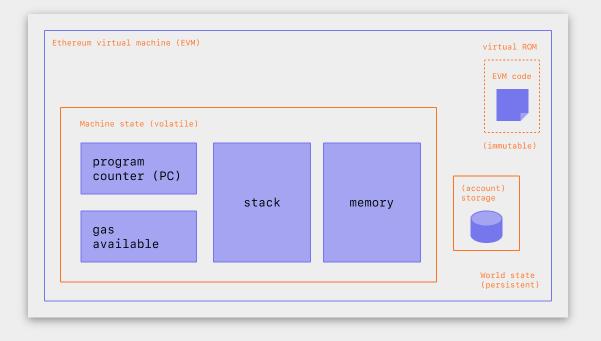
Smart Contracts Security

Smart ≠ Secure

Smart Contracts

A digital contract executed via computerized transactions

Concept proposed by Nick Szabo in 1994 Plays a "brain" role and enables application development Most blockchains support smart contracts (e.g. Ethereum, Aptos, Solana)


Smart Contracts

A digital contract executed via computerized transactions

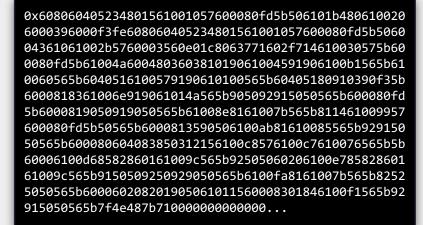
Ethereum Virtual Machine (EVM)

The World's Computer

- Programmable, decentralized state-machine
- Turing-complete smart contracts can be executed
 - Decentralized computing platform!
- EVM Architecture
 - Stack-based VM
 - ✤ Gas as "fee"

Why Gas?

Ethereum blockchain uses fees as fuel for executing smart contracts Gas usage is limited, and prices are adjusted according to market economics to ensure network stability

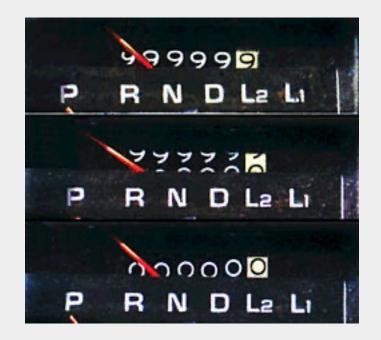

Decentralized app (DApp) development language in EVM-based blockchain

- Similar syntax as JavaScript, Java, Go
- ✤ Basic programming structure
 - Arithmetic operations, types, constants and variables, control statements, function calls, memory, basic data structures, error handling, etc.

Compiled to Bytecode

Reserved keywords and global variables to access blockchain info

```
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.16;
contract TheoriRules {
   function add(uint a, uint b) external pure returns(uint) {
      return a+b;
   }
}
```

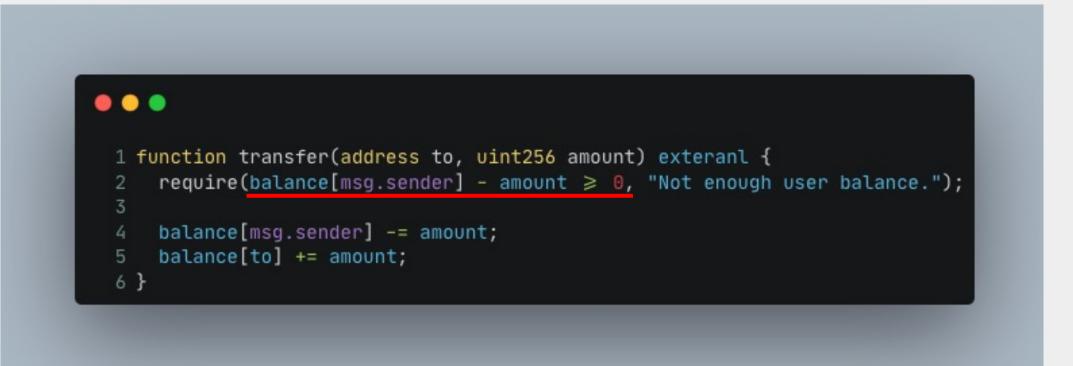


Smart Contracts Security

We will be focusing on Solidity code

Most of the smart contracts are deployed on EVM compatible chain and written in Solidity

- Smart Contract Weaknesses
 - SWC-101: Integer overflow / underflow
 - SWC-107: Reentrancy
 - SWC-136: Unencrypted Private Data On-Chain
 - SWC-128: DoS With Block Gas Limit
 - SWC-122: Lack of Proper Signature Verification
 - SWC-113: DoS with Failed Call


Integer overflow / underflow


Integer overflow / underflow

Туре	Storage size	Value range
char	1 byte	-128 to 127 or 0 to 255
unsigned char	1 byte	0 to 255
signed char	1 byte	-128 to 127
int	2 or 4 bytes	-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int	2 or 4 bytes	0 to 65,535 or 0 to 4,294,967,295
short	2 bytes	-32,768 to 32,767
unsigned short	2 bytes	0 to 65,535
long	4 bytes	-2,147,483,648 to 2,147,483,647
unsigned long	4 bytes	0 to 4,294,967,295

Integer overflow / underflow - Example

Integer overflow / underflow - Example

Integer overflow / underflow - Remediation

From solidity 0.8.0, compiler add safeguards on the entire of arithmetic calculations ON Dec 16, 2020.

Solidity Programming Language

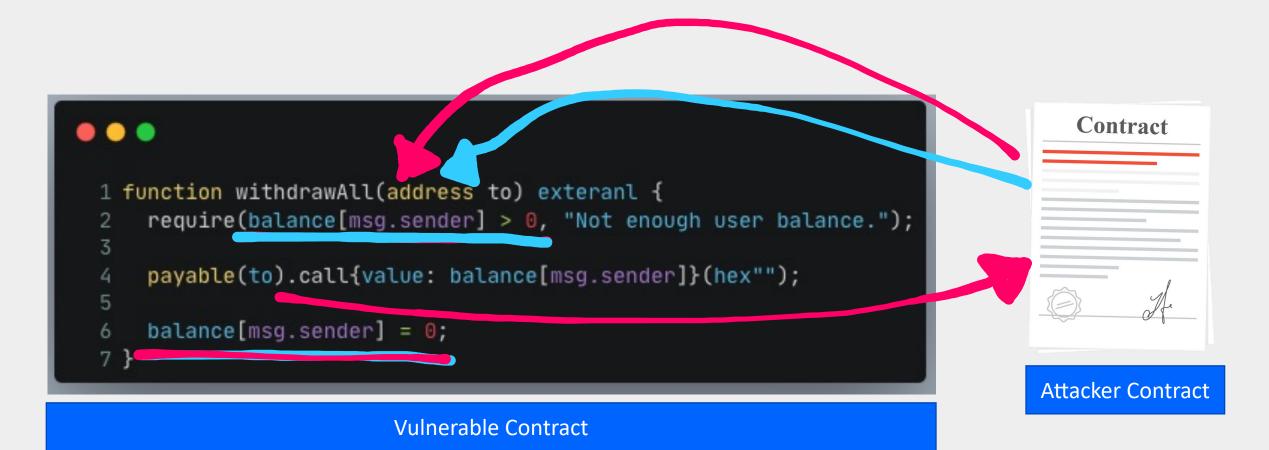
https://blog.soliditylang.org > 2020/12/16 > solidity-v...

Solidity 0.8.0 Release Announcement

Dec 16, 2020 — Solidity 0.8.0 is a breaking release of the Solidity compiler and language. Some of the new features of this release have been elaborated in ...

Any interaction from a contract (A) with another contract (B) and any transfer of Ether hands over control to that contract (B).

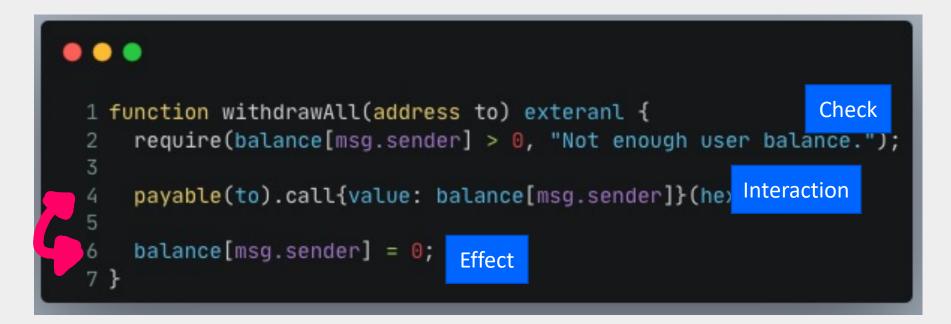
This makes it possible for B to call back into A before this interaction is completed.


To give an example, the following code contains a bug (it is just a snippet and not a complete contract):

Reentrancy - Example

•••

```
1 function withdrawAll(address to) exteranl {
2 require(balance[msg.sender] > 0, "Not enough user balance.");
3
4 payable(to).call{value: balance[msg.sender]}(hex"");
5
6 balance[msg.sender] = 0;
7 }
```

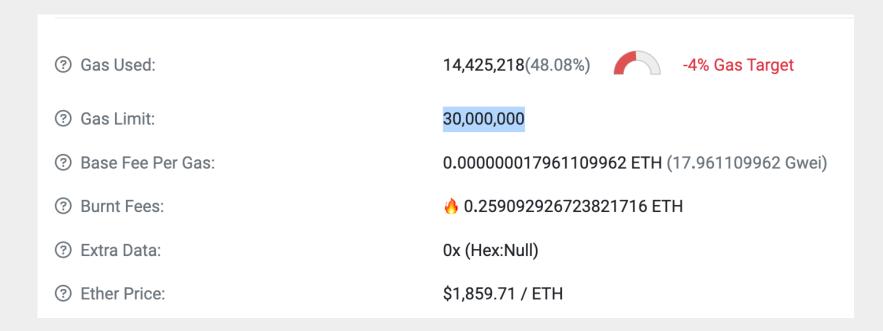

Reentrancy - Example

Reentrancy - Remediation

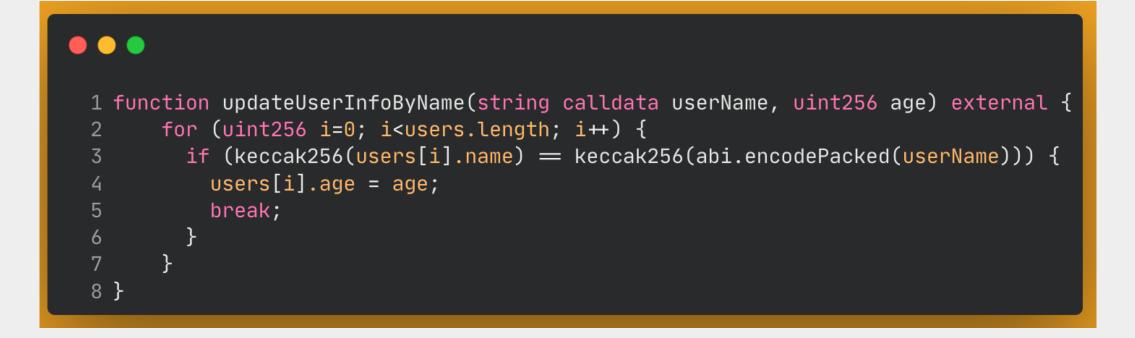
Checks-Effects-Interactions pattern

<u>https://docs.soliditylang.org/en/v0.6.11/security-considerations.html</u>

Reentrancy - Remediation


Non-reentrant modifier (mutex)

Enforce limits on call to the same function among the same call stack.



DoS With Block Gas Limit

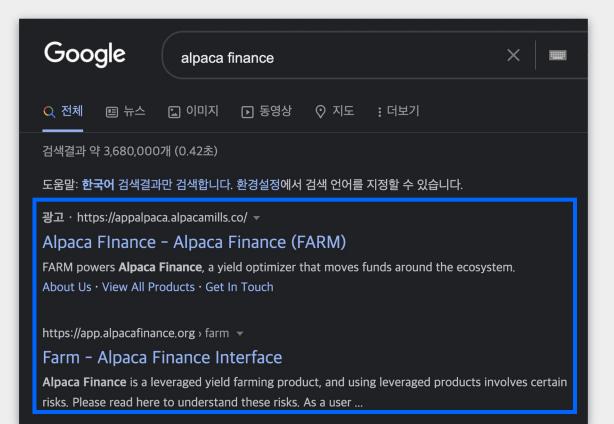
User pays "Gas" as a transaction fee.Block has a limitation of maximum gas, Gas Limit.

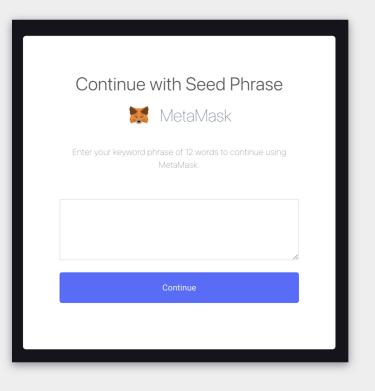
DoS With Block Gas Limit

DoS With Block Gas Limit - Remediation

DoS With Block Gas Limit - Remediation

•••


- 1 <u>mapping(bytes32</u>⇒uint256) userNameToIndex;
- 2 function updateUserIntoByName(string calldata userName, uint256 age) external {
- 4 }


Real-world Incidents

Real World Case I: Phishing

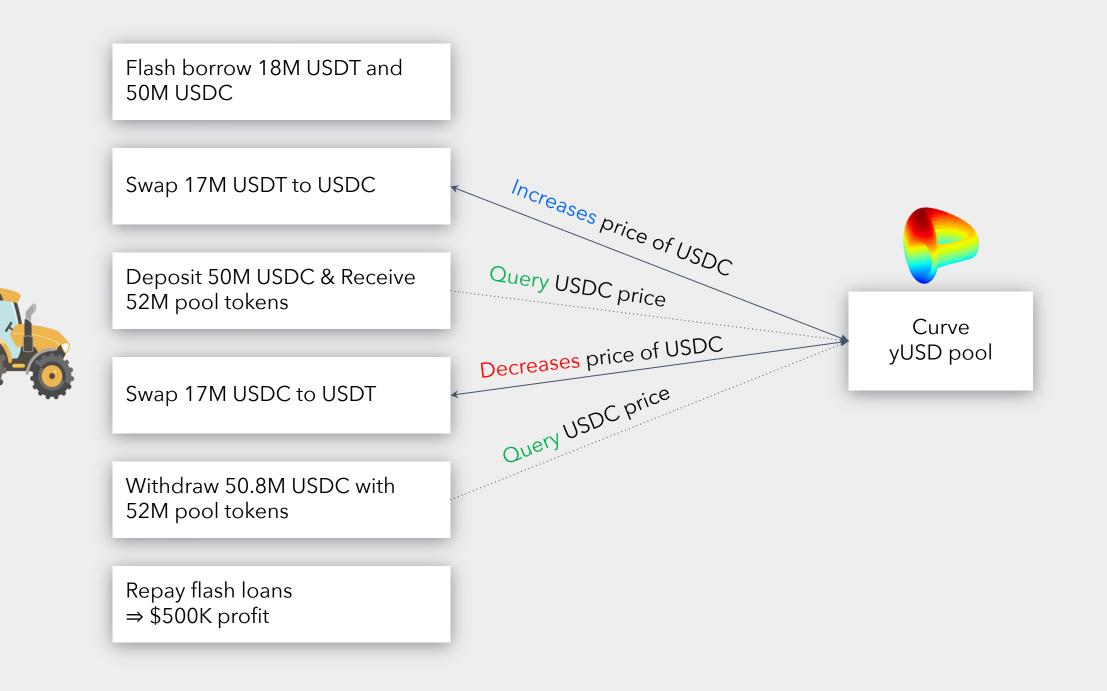
Low technical difficulty, but highly effective attack #Pay2Hack

Low **technical difficulty**, but **highly effective** attack **#Pay2Hack Ethereum Mainnet** Balance Account 1 0 ETH A Your funds may be at risk People studied no one (even Metamask) asks for seed phrases Account 1 (0x0b2...cc08) They started to ask you "sign" something. (= tx hash) Signing this message could be dangerous. You may be giving total control of your For more details: account and assets to the party on the other end of this message. That means they could drain your account at any time. Proceed with caution. Learn more. https://blog.chainlight.io/si-vis-pacem-para-bellum-exploringmetamask-phishing-4605425d80a7 Sign Reject

Reject

Sign

Real World Case I: Phishing


Real World Case II: Harvest Finance

💸 \$33.8M of losses (\$24M to attacker)

- * Classic example of price oracle attack with a flash loan
- The attacker successfully gained profit with 10 ETH
 - Swap to increase price of USDC token (USDT ⇒ USDC)
 - Deposit USDC into Vault
 - Swap to decrease price of USDC token (USDC ⇒ USDT)
 - Withdraw USDC from Vault (price is lower, so we get more USDC)
 - Repeat

🖹 0xc6028a9fa486f52efd2	-	Harvest.Finance: Hacker 1	20 Ether
🖹 0xc6028a9fa486f52efd2	\rightarrow	Harvest.Finance: Hacker 1	20 Ether
	\rightarrow	Harvest.Finance: Hacker 1	20 Ether
	\rightarrow	Harvest.Finance: Hacker 1	20 Ether
🖹 0xc6028a9fa486f52efd2	-	Harvest.Finance: Hacker 1	20 Ether
🖹 0xc6028a9fa486f52efd2	-	Harvest.Finance: Hacker 1	20 Ether
🖹 0xc6028a9fa486f52efd2	-	Harvest.Finance: Hacker 1	20 Ether
🖹 0xc6028a9fa486f52efd2	-	Harvest.Finance: Hacker 1	20 Ether
🖹 0xc6028a9fa486f52efd2	-	Harvest.Finance: Hacker 1	20 Ether
Tornado.Cash: 10 ETH	-	Harvest.Finance: Hacker 1	9.984 Ether

Real World Case III: Nomad Bridge

💐 \$190M of losses

* "Every-man-for-himself" as everyone copied the attack

(First crowd hacking ..?)

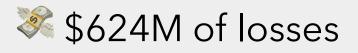
🙀 Code upgrade added a bug

Special cases were added for "legacy" messages

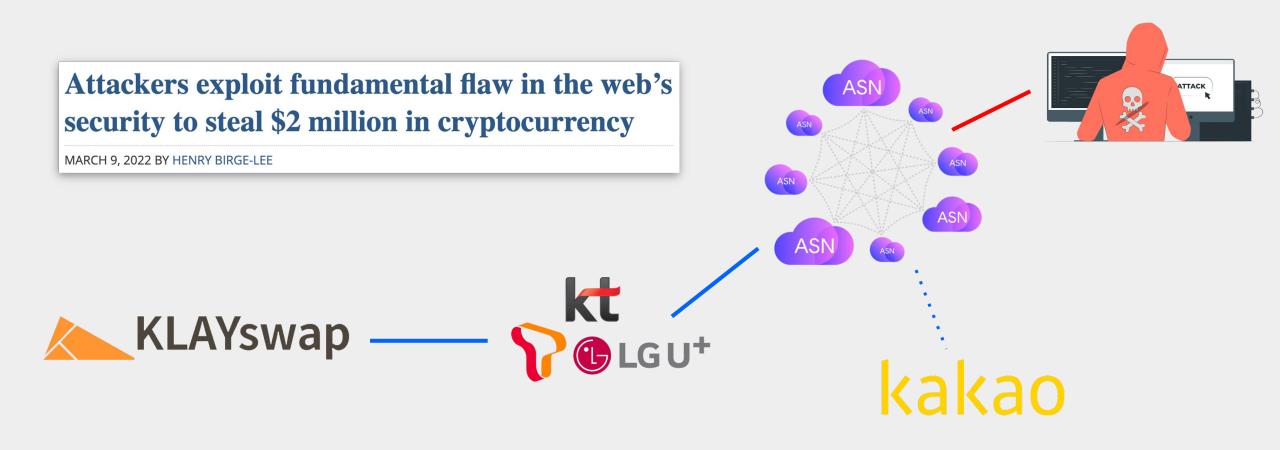
✤ Failed to handle special case of None (0x0)

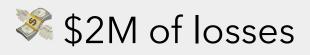
😇 By itself, not exploitable, except...

During initialization, 0x0 was accidentally set as a trusted Merkle root


- On Ethereum, uninitialized storage defaults to 0x0
- ✤ All messages with an uninitialized root are now valid!

🖹 Nomad: ERC20 Bridge	OUT	0x9b78bbf9ee05487396	121,387.701073	Dai Stableco (DAl)
Nomad: ERC20 Bridge	ОUT	0xf164ce5450e9362e26	121,387.701073	Dai Stableco (DAl)
Nomad: ERC20 Bridge	OUT	🖹 0x2c73406a1463e34f43	121,387.701073	Dai Stableco (DAI)
BNomad: ERC20 Bridge	OUT		121,387.701073	Dai Stableco (DAI)
Nomad: ERC20 Bridge	ОИТ	🖹 0xfa0a622f028bf60a129	121,387.701073	Dai Stableco (DAI)
Nomad: ERC20 Bridge	ОUT	0x9c4a13675c38a28c30	121,387.701073	Dai Stableco (DAI)
Nomad: ERC20 Bridge	OUT	0xf57113d8f6ff35747737	121,387.701073	Dai Stableco (DAI)
BNomad: ERC20 Bridge	OUT	0xbf2bdbfb505dd8d5269	121,387.701073	Dai Stableco (DAI)
BNomad: ERC20 Bridge	ОИТ	B 0x0d683079d989294c79	121,387.701073	Dai Stableco (DAI)
BNomad: ERC20 Bridge	ОИТ	Dx0db09d04d33539e336	121,387.701073	Dai Stableco (DAI)


Real World Case IV: Ronin Network



- Korea); Broke "multisig"
- Bridge contract used a 5 of 9 signature check
 - ✤ 5 validators must sign a message
 - ✤ 9 total validators
- 4 validators were run by **ONE** company
 - \diamond 1 additional validator approved that company to sign on its behalf... \Re
- Solution \cong Hack 1 company \Rightarrow Control 5 of 9 validators \Rightarrow Profit

Real World Case V: KLAYswap

Real World Case V: KLAYswap

Infrastructure & Web2 compromise ⇒ Damage in Web3 (Web3 Smart Contract was SAFU ^{SO})

SSL/TLS bypass possible with **Existing** and **TerossL**

- Sklayswap used CloudFlare
 - More difficult to hijack as CloudFlare is widely announced
 - Instead, attacker targeted a library hosted on a third-party server

Real World Case V: KLAYswap

Celer Network hacked with BGP hijack 7 months later 🐱

Hosted on Amazon AWS, but still vulnerable to BGP hijack

Celer Network cBridge Users Lose \$240k in DNS Hijack, CELR Lists on Coinbase

Jamie McNeill Last updated: 19 August 2022

BGP hijacks are **NOT** going away. Protocols must take precautions!

Real World Incidents - Hands on exercise

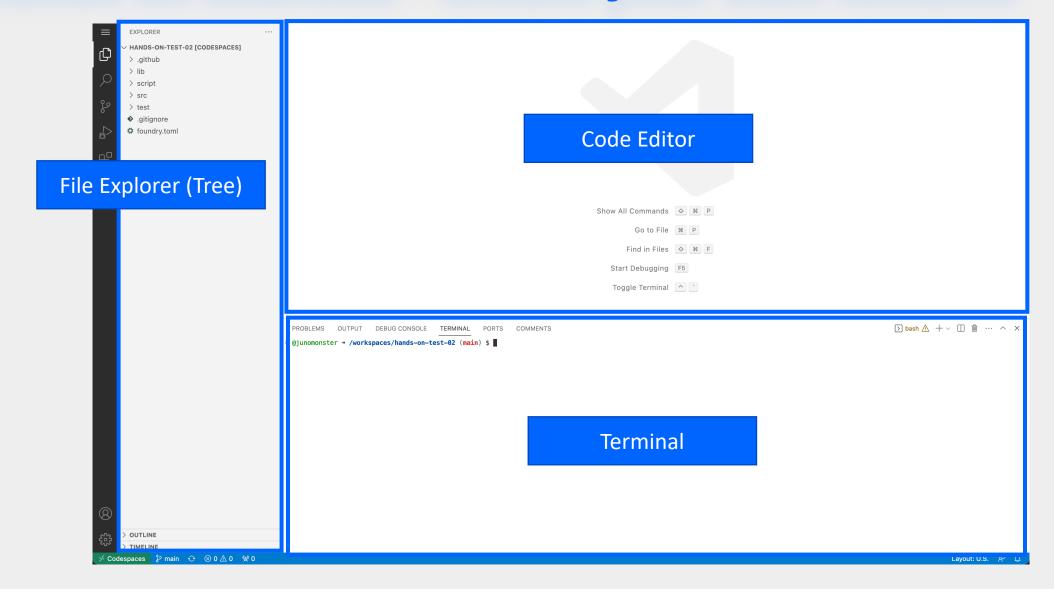
Testing environment setup: GitHub Codespace + foundry-rs

Hands on exercise: Code with me

- Reentrancy Bug Easy
- Reentrancy Bug Hard
- Integer Over/Underflow

Real World Incidents - Hands on exercise

"Foundry": blazing fast, portable and modular toolkit for Ethereum application development written in Rust


- Fast & flexible compilation pipeline
- Tests are written in Solidity
- Fast fuzz testing
- Fast remote RPC forking mode
- Flexible debug logging
- ♦ Portable (5-10MB) & easy to install
- ✤Fast CI

Test like a pro (KR): <u>https://www.youtube.com/watch?v=C8V8mlxwgXI&t=1731s</u>

• https://github.com/chainlight-io/web3kaist-hands-on

ainlight-io / web3kaist-hands-on	Public template	🛇 Edit Pins 👻 💿 Wate
ode 💿 Issues ११ Pull requests 🕑 A	actions 🖽 Projects 🖽 Wiki 😲 Security 🗠 Insights	න් Settings
양 main → 양 1 branch ⓒ 3 tags	Go to file Add file - <> Code -	Use this template
junomonster Fix typo	bf18dd5 12	Create a new repository Open in a codespace
.github/workflows	Fix typo	12 hours ago
lib/forge-std	Init repo	12 hours ago
script	Init repo	12 hours ago
src src	Init repo	12 hours ago
🖿 test	Init repo	12 hours ago
🗋 .gitignore	Init repo	12 hours ago
foundry.toml	Init repo	12 hours ago
Help people interested in this repository uno	lerstand your project by adding a README.	Add a README

omonster / hands-on-test-(ed from chainlight-io/web3kaist-hands-on	D2 Private		⊙ Unwa		
ode ⊙ Issues ి∜ Pull requests	🕑 Actions 🛛 🗄 Projects	() Security 🗠 Insights 🔞 Se	ttings		
양 main → 양1 branch ा⊙0	tags	Go to file A	dd file - <> Code -		
junomonster Initial commit		Local	Codespaces		
.github/workflows	Initial commit	Codespaces Your workspaces in the cloud	+ …		
lib/forge-std	Initial commit				
script	Initial commit	No codesp	aces		
src src	Initial commit	You don't have any codespaces with this repository checked out			
📄 test	Initial commit	repository chec	cked out		
🗋 .gitignore	Initial commit	Create codespace	ce on main		
foundry.toml	Initial commit	Learn more about c	odespaces		
Add a README with an overview of your project.		Codespace usage for this repository is paid for by junomonster			
	your project.				

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS

● @junomonster → /workspaces/hands-on-test-02 (main) \$ curl -L https://foundry.paradigm.xyz | bash % Total % Received % Xferd Average Speed Time Current Time Time Dload Upload Total Spent Left Speed 0 0 0 0 0 --:--:-- --:--:--0 100 1887 100 1887 5770 5770 Installing foundryup...

Download Installer

Detected your preferred shell is bash and added foundryup to PATH. Run 'source /home/codespace/.bashrc' or start a new terminal session to use foundryup.

Then, simply run 'foundryup' to install Foundry. ○ @junomonster → /workspaces/hands-on-test-02 (main) \$ Load Installer ● @junomonster → /workspaces/hands-on-test-02 (main) \$. ~/.bashrc

@junomonster → /workspaces/nands-on-test-02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/hands on test 02 (main) \$. ~/.bashr(Giunomonster → /workspaces/

 \bigcirc @junomonster → /workspaces/hands-on-test-02 (main) \$ foundryup

Execute Installer

FOUNDRY

Portable and modular toolkit for Ethereum Application Development written in Rust.

- Repo : https://github.com/foundry-rs/
- Book : https://book.getfoundry.sh/
- Chat : https://t.me/foundry_rs/

Support : https://t.me/foundry_support/

Contribute : https://github.com/orgs/foundry-rs/projects/2/

Lecture goal: Pass the three test cases below

```
③ @junomonster → /workspaces/hands-on-test-02 (main) $ forge test -v
["] Compiling...
No files changed, compilation skipped
Running 3 tests for test/SafeVaultExploit.t.sol:SafeVaultTest
[FAIL. Reason: Assertion failed.] testIntegerOverUnderflow() (gas: 40188)
[FAIL. Reason: Assertion failed.] testReentrancySuccessEasy() (gas: 46061)
[FAIL. Reason: Assertion failed.] testReentrancySuccessHard() (gas: 46026)
Test result: FAILED. 0 passed; 3 failed; finished in 10.20ms
Failing tests:
Encountered 3 failing tests in test/SafeVaultExploit.t.sol:SafeVaultTest
[FAIL. Reason: Assertion failed.] testIntegerOverUnderflow() (gas: 40188)
[FAIL. Reason: Assertion failed.] testIntegerOverUnderflow() (gas: 40188)
[FAIL. Reason: Assertion failed.] testReentrancySuccessEasy() (gas: 40061)
[FAIL. Reason: Assertion failed.] testReentrancySuccessEasy() (gas: 46061)
[FAIL. Reason: Assertion failed.] testReentrancySuccessEasy() (gas: 46026)
Encountered a total of 3 failing tests, 0 tests succeeded
O @junomonster → /workspaces/hands-on-test-02 (main) $ _______
```

Hands on exercise - Code with me (Live Coding)

The final answers are available on the main repo's tags:

- <u>https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyEasyAnswer</u>
- <u>https://github.com/chainlight-io/web3kaist-hands-on/tree/ReentrancyHardAnswer</u>
- <u>https://github.com/chainlight-io/web3kaist-hands-on/tree/IntegerOverUnderflowAttackHandlerAnswer</u>

Future-proof your Security

Preparing for Safe Web3 Ecosystem

The way to more secure Web3 ecosystem

If anything changes, do the above steps again!

Wrap Up

Cyber / Web3 Security

- Introduce ability to implement any application logics in a decentralized environment
- Immutability, transparency, distributed, and decentralized are exciting features, but security is important
- ✤ It is a relatively new field and expected to mature over the next few years
- Smart contracts are still human-implemented programs and are not immune to mistakes

* However, Web3 security is not just about smart contract security

 Requires not only traditional security skills, but also blockchain-specific and financial engineering knowledge

Thank You

Web3 Security Adventure to Safer Web3 World

Brian Pak, CEO, Theori

brian@theori.io

Juno Im, Lead, ChainLight

juno@theori.io

